




**Correlation of** 

# *Calculus for AP<sup>®</sup>,* 2/E, by Ron Larson/ Paul Battaglia, © 2021, ISBN: 9780357431948/9780357520314

to

Indiana Academic Standards for Mathematics High School Calculus

| Academic Standards for Mathematics                                                                                                                      | SE Where Addressed                                                                                                                                                                  | TE Where Addressed                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROCESS STANDARDS FOR MATHEMATICS                                                                                                                       |                                                                                                                                                                                     |                                                                                                                                                                                              |
| PS.1: Make sense of problems and persevere in solving them.                                                                                             | Performance Task (pp. 122, 210, 278, 368, 408, 454, 532, 630, 710)                                                                                                                  | Performance Task (pp. 122, 210, 278, 368, 408, 454, 532, 630, 710)                                                                                                                           |
| PS.2: Reason abstractly and quantitatively.                                                                                                             | Section 2.6 (p. 188), Section 3.5 (pp. 252, 254-<br>255), Section 3.7 (p. 273), Section 4.2 (pp. 300-<br>301), Section 4.3 (pp. 315-316), Section 4.4 (pp. 326, 328)                | Section 2.6 (p. 188), Section 3.5 (pp. 252, 254-255), Section 3.7 (p. 273), Section 4.2 (pp. 300-301), Section 4.3 (pp. 315-316), Section 4.4 (pp. 326, 328)                                 |
| PS.3: Construct viable arguments and critique the reasoning of others.                                                                                  | Section 4.7 (p. 355), Section 5.2 (p. 379), Section 5.3 (pp. 395-396), Section 6.1 (pp. 417, 419), Section 6.4 (p. 447)                                                             | Section 4.7 (p. 355), Section 5.2 (p. 379), Section 5.3 (pp. 395-396), Section 6.1 (pp. 417, 419), Section 6.4 (p. 447)                                                                      |
| PS.4: Model with mathematics.                                                                                                                           | Review Exercises (p. 206), Performance Task (p. 210), Section 3.4 (pp. 243-244), Section 3.6 (pp. 260-261), Performance Task (p. 278), Section 4.4 (p. 322)                         | Review Exercises (p. 206), Performance Task (p. 210), Section 3.4 (pp. 243-244), Section 3.6 (pp. 260-261), Performance Task (p. 278), Section 4.4 (p. 322)                                  |
| PS.5: Use appropriate tools strategically.                                                                                                              | Section 1.2 (pp. 73-75), Section 1.3 (p. 77),<br>Section 2.3 (p. 156), Section 2.4 (pp. 169, 171),<br>Section 2.6 (p. 188), Section 5.2 (p. 382)                                    | Section 1.2 (pp. 73-75), Section 1.3 (p. 77),<br>Section 2.3 (p. 156), Section 2.4 (pp. 169, 171),<br>Section 2.6 (p. 188), Section 5.2 (p. 382)                                             |
| PS.6: Attend to precision.                                                                                                                              | Section 1.6 (p. 117), Section 2.1 (p. 134), Section 2.2 (p. 146), Section 2.4 (p. 173), Section 3.3 (p. 236), Section 4.2 (pp. 299-300)                                             | Section 1.6 (p. 117), Section 2.1 (p. 134), Section 2.2 (p. 146), Section 2.4 (p. 173), Section 3.3 (p. 236), Section 4.2 (pp. 299-300)                                                      |
| PS.7: Look for and make use of structure.                                                                                                               | Section 2.3 (p. 158), Section 2.4 (p. 173), Section 3.6 (p. 264), Section 4.1 (p. 283), Section 4.6 (pp. 334-336), Section 7.1 (p. 462), Section 7.2 (p. 471), Section 7.7 (p. 508) | Section 2.3 (p. 158), Section 2.4 (p. 173), Section<br>3.6 (p. 264), Section 4.1 (p. 283), Section 4.6 (pp.<br>334-336), Section 7.1 (p. 462), Section 7.2 (p.<br>471), Section 7.7 (p. 508) |
| PS.8: Look for and express regularity in repeated reasoning.                                                                                            | Performance Task (p. 122), Section 2.4 (p. 164),<br>Section 2.8 (p. 199), Section 4.4 (p. 318), Section<br>7.2 (p. 466), Performance Task (p. 368)                                  | Performance Task (p. 122), Section 2.4 (p. 164),<br>Section 2.8 (p. 199), Section 4.4 (p. 318), Section<br>7.2 (p. 466), Performance Task (p. 368)                                           |
| Limits and Continuity                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                                              |
| C.LC.1 Understand the concept of limit and estimate limits from graphs and tables of values                                                             | Section 1.2 (pp. 65-70)                                                                                                                                                             | Section 1.2 (pp. 65-70)                                                                                                                                                                      |
| C.LC.2 Find limits by substitution.                                                                                                                     | Section 1.3 (p. 76)                                                                                                                                                                 | Section 1.3 (p. 76)                                                                                                                                                                          |
| C.LC.3 Find limits of sums, differences, products, and quotients.                                                                                       | Section 1.3 (pp. 76-77)                                                                                                                                                             | Section 1.3 (pp. 76-77)                                                                                                                                                                      |
| C.LC.4 Find limits of rational functions that are undefined at a point.                                                                                 | Section 1.3 (pp. 79-83)                                                                                                                                                             | Section 1.3 (pp. 79-83)                                                                                                                                                                      |
| C.LC.5 Find limits at infinity.                                                                                                                         | Section 1.6 (pp. 108-113)                                                                                                                                                           | Section 1.6 (pp. 108-113)                                                                                                                                                                    |
| C.LC.6 Decide when a limit is infinite and use limits involving<br>Calculus for AP, with CalcChat <sup>®</sup> and CalcView <sup>®</sup> , 5/E - IN, HS | Section 1.6 (p. 114)                                                                                                                                                                | Section 1.6 (p. 114)                                                                                                                                                                         |

| Academic Standards for Mathematics                                                                                                                          | SE Where Addressed                                   | TE Where Addressed                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| infinity to describe asymptotic behavior. Find special limits.                                                                                              |                                                      |                                                      |
| C.LC.7 Find one-sided limits.                                                                                                                               | Section 1.4 (pp. 89-90)                              | Section 1.4 (pp. 89-90)                              |
| C.LC.8 Understand continuity in terms of limits.                                                                                                            | Section 1.4 (pp. 87-88)                              | Section 1.4 (pp. 87-88)                              |
| C.LC.9 Decide if a function is continuous at a point.                                                                                                       | Section 1.4 (p. 87)                                  | Section 1.4 (p. 87)                                  |
| C.LC.10 Find the types of discontinuities of a function.                                                                                                    | Section 1.4 (pp. 87-88)                              | Section 1.4 (pp. 87-88)                              |
| C.LC.11 Understand and use the Intermediate Value<br>Theorem on a function over a closed interval.                                                          | Section 1.4 (pp. 94-95)                              | Section 1.4 (pp. 94-95)                              |
| C.LC.12 Understand and apply the Extreme Value Theorem: If $f(x)$ is continuous over a closed interval, then f has a maximum and a minimum on the interval. | Section 3.1 (pp. 212-216)                            | Section 3.1 (pp. 212-216)                            |
| Differentiation                                                                                                                                             |                                                      |                                                      |
| C.D.1 Understand the concept of derivative geometrically, numerically, and analytically, and interpret the derivative as a rate of change.                  | Section 2.1 (pp. 124-128, 131), Section 2.2 (p. 142) | Section 2.1 (pp. 124-128, 131), Section 2.2 (p. 142) |
| C.D.2 State, understand, and apply the definition of derivative.                                                                                            | Section 2.1 (pp. 127-128)                            | Section 2.1 (pp. 127-128)                            |
| C.D.3 Find the derivatives of functions, including algebraic, trigonometric, logarithmic, and exponential functions.                                        | Section 2.2 (pp. 135-141)                            | Section 2.2 (pp. 135-141)                            |
| C.D.4 Find the derivatives of sums, products, and quotients.                                                                                                | Section 2.2 (p. 139), Section 2.3 (pp. 148-153)      | Section 2.2 (p. 139), Section 2.3 (pp. 148-153)      |
| C.D.5 Find the derivatives of composite functions, using the chain rule.                                                                                    | Section 2.4 (pp. 159-168)                            | Section 2.4 (pp. 159-168)                            |
| C.D.6 Find the derivatives of implicitly-defined functions.                                                                                                 | Section 2.5 (pp. 174-179)                            | Section 2.5 (pp. 174-179)                            |
| C.D.7 Find the derivatives of inverse functions.                                                                                                            | Section 2.6 (pp. 183-185)                            | Section 2.6 (pp. 183-185)                            |
| C.D.8 Find second derivatives and derivatives of higher order.                                                                                              | Section 2.3 (p. 154), Section 2.5 (p. 178)           | Section 2.3 (p. 154), Section 2.5 (p. 178)           |
| C.D.9 Find derivatives using logarithmic differentiation.                                                                                                   | Section 2.5 (p. 179)                                 | Section 2.5 (p. 179)                                 |
| C.D.10 Understand and apply the relationship between differentiability and continuity.                                                                      | Section 2.1 (pp. 129-130)                            | Section 2.1 (pp. 129-130)                            |
| C.D.11 Understand and apply the Mean Value Theorem.                                                                                                         | Section 3.2 (pp. 222-223)                            | Section 3.2 (pp. 222-223)                            |
| Applications of Derivatives                                                                                                                                 |                                                      |                                                      |
| C.AD.1 Find the slope of a curve at a point, including points at which there are vertical tangents and no tangents.                                         | Section 2.1 (p. 126-130)                             | Section 2.1 (p. 126-130)                             |
| C.AD.2 Find a tangent line to a curve at a point and a local linear approximation.                                                                          | Section 2.1 (pp. 124-128), Section 3.7 (p. 267)      | Section 2.1 (pp. 124-128), Section 3.7 (p. 267)      |

| Academic Standards for Mathematics                                                                                                                                                                                                                                      | SE Where Addressed                                                                                               | TE Where Addressed                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| C.AD.3 Decide where functions are decreasing and increasing. Understand the relationship between the increasing and decreasing behavior of f and the sign of f'.                                                                                                        | Section 3.3 (pp. 227-228)                                                                                        | Section 3.3 (pp. 227-228)                                                                                        |
| C.AD.4 Solve real-world and other mathematical problems finding local and absolute maximum and minimum points with and without technology.                                                                                                                              | Section 3.3 (pp. 229-232, 235)                                                                                   | Section 3.3 (pp. 229-232, 235)                                                                                   |
| C.AD.5 Analyze real-world problems modeled by curves,<br>including the notions of monotonicity and concavity with and<br>without technology.                                                                                                                            | Section 3.3 (pp. 228-232), Section 3.4 (pp. 237-<br>241, 243-244)                                                | Section 3.3 (pp. 228-232), Section 3.4 (pp. 237-<br>241, 243-244)                                                |
| C.AD.6 Find points of inflection of functions. Understand the relationship between the concavity of f and the sign of f". Understand points of inflection as places where concavity changes.                                                                            | Section 3.4 (pp. 239-241)                                                                                        | Section 3.4 (pp. 239-241)                                                                                        |
| C.AD.7 Use first and second derivatives to help sketch<br>graphs modeling real-world and other mathematical problems<br>with and without technology. Compare the corresponding<br>characteristics of the graphs of f, f', and f".                                       | Section 3.5 (pp. 245-252)                                                                                        | Section 3.5 (pp. 245-252)                                                                                        |
| C.AD.8 Use implicit differentiation to find the derivative of an inverse function.                                                                                                                                                                                      | Section 2.6 (p. 185)                                                                                             | Section 2.6 (p. 185)                                                                                             |
| C.AD.9 Solve optimization real-world problems with and without technology.                                                                                                                                                                                              | Section 3.6 (pp. 257-261)                                                                                        | Section 3.6 (pp. 257-261)                                                                                        |
| C.AD.10 Find average and instantaneous rates of change.<br>Understand the instantaneous rate of change as the limit of<br>the average rate of change. Interpret a derivative as a rate of<br>change in applications, including distance, velocity, and<br>acceleration. | Section P.2 (p. 16), Section 2.1 (pp. 127, 131),<br>Section 2.2 (pp. 142-143)                                    | Section P.2 (p. 16), Section 2.1 (pp. 127, 131),<br>Section 2.2 (pp. 142-143)                                    |
| C.AD.11 Find the velocity and acceleration of a particle moving in a straight line.                                                                                                                                                                                     | Section 2.2 (pp. 143, 146), Section 2.3 (pp. 154, 157-158), Performance Task (p. 210), Section 3.3 (pp. 235-236) | Section 2.2 (pp. 143, 146), Section 2.3 (pp. 154, 157-158), Performance Task (p. 210), Section 3.3 (pp. 235-236) |
| C.AD.12 Model rates of change, including related rates problems.                                                                                                                                                                                                        | Section 2.7 (pp. 190-194)                                                                                        | Section 2.7 (pp. 190-194)                                                                                        |
| Integrals                                                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                  |
| C.I.1 Use rectangle approximations to find approximate values of integrals.                                                                                                                                                                                             |                                                                                                                  | Section 4.2 (pp. 293-298)                                                                                        |
| C.I.2 Calculate the values of Riemann Sums over equal subdivisions using left, right, and midpoint evaluation points.                                                                                                                                                   | Section 4.3 (pp. 302-303)                                                                                        | Section 4.3 (pp. 302-303)                                                                                        |
| C.I.3 Interpret a definite integral as a limit of Riemann Sums.                                                                                                                                                                                                         | Section 4.3 (pp. 304-305)                                                                                        | Section 4.3 (pp. 304-305)                                                                                        |

| Academic Standards for Mathematics                                                                                                                                                                                                                                                                                                                                                                                        | SE Where Addressed                  | TE Where Addressed                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|
| C.I.4 Understand the Fundamental Theorem of Calculus:<br>Interpret a definite integral of the rate of change of a quantity<br>over an interval as the change of the quantity over the<br>interval.                                                                                                                                                                                                                        | Section 4.4 (pp. 317-319)           | Section 4.4 (pp. 317-319)           |
| C.I.5 Use the Fundamental Theorem of Calculus to evaluate definite and indefinite integrals and to represent particular antiderivatives. Perform analytical and graphical analysis of functions so defined.                                                                                                                                                                                                               | Section 4.4 (pp. 319, 322, 326-327) | Section 4.4 (pp. 319, 322, 326-327) |
| C.1.6 Understand and use these properties of definite<br>integrals.<br>a. $\int b a [f(x) + g(x)]dx = \int b a f(x)dx + \int b a g(x)dx$<br>b. $\int b a k \cdot [f(x)]dx = k \cdot \int b a f(x)dx$<br>c. $\int a a f(x)dx = 0$<br>d. $\int b a f(x)dx = -\int a b f(x)dx$<br>e. $\int b a f(x)dx + \int c b f(x)dx = \int c a f(x)dx$<br>f. If $f(x) \le g(x)$ on $[a, b]$ , then $\int b a f(x)dx \le \int b a g(x)dx$ | Section 4.3 (pp. 307-309)           | Section 4.3 (pp. 307-309)           |
| C.I.7 Understand and use integration by substitution (or change of variable) to find values of integrals.                                                                                                                                                                                                                                                                                                                 | Section 4.6 (pp. 334-341)           | Section 4.6 (pp. 334-341)           |
| C.I.8 Understand and use Riemann Sums, the Trapezoidal<br>Rule, and technology to approximate definite integrals of<br>functions represented algebraically, geometrically, and by<br>tables of values.                                                                                                                                                                                                                    | Section 4.3 (pp. 302-311)           | Section 4.3 (pp. 302-311)           |
| Applications of Integrals                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                     |
| C.Al.1 Find specific antiderivatives using initial conditions,<br>including finding velocity functions from acceleration<br>functions, finding position functions from velocity functions,<br>and applications to motion along a line.                                                                                                                                                                                    | Section 4.1 (pp. 286, 288-289)      | Section 4.1 (pp. 286, 288-289)      |
| C.AI.2 Solve separable differential equations and use them in modeling real-world problems with and without technology.                                                                                                                                                                                                                                                                                                   | Section 5.3 (pp. 387-392)           | Section 5.3 (pp. 387-392)           |
| C.AI.3 Solve differential equations of the form y' = ky as applied to growth and decay problems.                                                                                                                                                                                                                                                                                                                          | Section 5.2 (pp. 380-383)           | Section 5.2 (pp. 380-383)           |
| C.Al.4 Use definite integrals to find the area between a curve and the x-axis, or between two curves.                                                                                                                                                                                                                                                                                                                     | Section 6.1 (pp. 410-415)           | Section 6.1 (pp. 410-415)           |
| C.AI.5 Use definite integrals to find the average value of a function over a closed interval.                                                                                                                                                                                                                                                                                                                             | Section 4.4 (pp. 321-322)           | Section 4.4 (pp. 321-322)           |

| Academic Standards for Mathematics                                                                                                                                                                                                                                                                                                      | SE Where Addressed                                                                                                                               | TE Where Addressed                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| C.AI.6 Use definite integrals to find the volume of a solid with known cross-sectional area.                                                                                                                                                                                                                                            | Section 6.2 (pp.420-426), Section 6.3 (pp. 431-435), Performance Task (p. 454)                                                                   | Section 6.2 (pp.420-426), Section 6.3 (pp. 431-435), Performance Task (p. 454)                                                                   |
| C.AI.7 Apply integration to model and solve (with and<br>without technology) real-world problems in physics, biology,<br>economics, etc., using the integral as a rate of change to<br>give accumulated change and using the method of setting<br>up an approximating Riemann Sum and representing its<br>limit as a definite integral. | Section 6.1 (pp. 418-419), Section 6.2 (pp. 425, 429), Section 6.3 (pp. 435, 438-439), Section 6.4 (pp. 443, 447-449), Performance Task (p. 454) | Section 6.1 (pp. 418-419), Section 6.2 (pp. 425, 429), Section 6.3 (pp. 435, 438-439), Section 6.4 (pp. 443, 447-449), Performance Task (p. 454) |

"National Geographic," "National Geographic Society" and the "Yellow Border Design" are registered trademarks of the National Geographic Society® Marcas Registradas.