Correlation from *Calculus for AP*[®] to College Board AP[®] Calculus AB and AP[®] Calculus BC Framework

Chapter P: Preparation for CalculusP.1Graphs and ModelsPrerequisite topicsP.2Linear Models and Rates of ChangePrerequisite topicsP.3Functions and Their GraphsPrerequisite topicsP.4Inverse FunctionsPrerequisite topicsP.5Exponential and Logarithmic FunctionsPrerequisite topicsChapter 1: Limits and Their PropertiesI.1CHA-1.A1.2Finding Limits Graphically and Numerically1.2, 1.3, 1.4, 1.9LIM-1.A, LIM-1.B, LIM-1.C, ILM-1.B, LIM-1.D, LIM-1.E1.3Evaluating Limits Analytically1.2, 1.5, 1.6, 1.7, 1.8, 1.9LIM-1.A, LIM-1.B, LIM-1.C, LIM-1.C, LIM-1.D, LIM-2.A, LIM-2.C, FUN-1.A1.4Continuity and One-Sided Limits1.3, 1.5, 1.10, 1.11, 1.12, LIM-1.C, LIM-1.D, LIM-2.A, LIM-2.C, FUN-1.ALIM-2.A, LIM-2.D1.5Infinite Limits1.9, 1.10, 1.14LIM-2.A, LIM-2.D1.6Limits at Infinity1.9, 1.15LIM-2.DChapter 2: Differentiation2.1, 2.2, 2.3, 2.4, 2.7, 4.1CHA-2.A, CHA-2.B, CHA-3.C, CHA-2.D, CHA-3.A, FUN-3.A, FUN-3.A, FUN-3.A, FUN-3.A, FUN-3.A, FUN-3.A, FUN-3.A, FUN-3.A, FUN-3.A, FUN-3.C2.1, 2.5, 2.6, 2.7, 4.1, 4.22.1The Derivative and the Tangent Higher-Order Derivatives2.1, 2.5, 2.6, 2.7, 4.1, 4.2CHA-2.A, CHA-2.B, CHA-3.A, CHA-3.B, FUN-3.A, FUN-3.A, FUN-3.C2.2Basic Differentiation3.2, 5.12FUN-3.B, FUN-3.C2.4The Chain Rule2.7, 3.1, 3.5FUN-3.B, FUN-3.C2.5Implicit Differentiation3.2, 5.12FUN-3.B, CHA-3.C, CHA-3.B,	
P.2Linear Models and Rates of ChangePrerequisite topicsP.3Functions and Their GraphsPrerequisite topicsP.4Inverse FunctionsPrerequisite topicsP.5Exponential and Logarithmic FunctionsPrerequisite topicsChapter 1: Limits and Their Properties1.1A Preview of Calculus1.11.2Finding Limits Graphically1.2, 1.3, 1.4, 1.91.3Evaluating Limits Analytically1.2, 1.5, 1.6, 1.7, 1.8, 1.91.4Continuity and One-Sided Limits1.3, 1.5, 1.10, 1.11, 1.12,1.5Infinite Limits1.9, 1.10, 1.14, 1.14, 1.2, LIM-1.0, LIM-2.A,1.6Limits at Infinity1.9, 1.10, 1.141.7LiM-2.A, CHA-2.B, CHA-2.C,1.6Limits and Rues and2.1The Derivative and the Tangent2.1, 2.2, 2.3, 2.4, 2.7, 4.12.1The Derivative and the Tangent2.1, 2.5, 2.6, 2.7, 4.1, 4.22.2Basic Differentiation2.1, 2.5, 2.6, 2.7, 4.1, 4.22.3Product and Quotient Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.22.4The Chain Rule2.7, 3.1, 3.53.7Product and Quotient Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.22.4The Chain Rule2.7, 3.1, 3.53.7Related Rates4.2, 4.3, 4.4, 4.53.8Newton's MethodChapter 3: Applications of Differentiation3.1Extrema on an Interval5.2, 5.4, 5.5, 5.123.1Extrema on an Interval5.13.2	
P.3Functions and Their GraphsPrerequisite topicsP4Inverse FunctionsPrerequisite topicsP5Exponential and Logarithmic FunctionsPrerequisite topicsChapter 1: Limits and Their Properties1.1CHA-1.A1.2Finding Limits Graphically and Numerically1.2, 1.3, 1.4, 1.9LIM-1.A, LIM-1.B, LIM-1.C and Numerically1.3Evaluating Limits Analytically 1.3, 1.5, 1.10, 1.11, 1.12, 1.14LIM-1.B, LIM-1.D, LIM-1.E1.4Continuity and One-Sided Limits1.3, 1.5, 1.10, 1.11, 1.12, 1.13, 1.16LIM-2.D, LIM-2.A, LIM-2.B, LIM-2.D, LIM-2.A, LIM-2.B, LIM-2.D, LIM-2.D,1.5Infinite Limits1.9, 1.10, 1.14LIM-2.B, LIM-2.D, LIM-2.B, CHU-2.A, LIM-2.B, CHU-2.A, LIM-2.DChapter 2: Differentiation2.1, 2.2, 2.3, 2.4, 2.7, 4.1CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.A, LIM-2.D2.1The Derivative and the Tangent Line Problem2.1, 2.5, 2.6, 2.7, 4.1, 4.2CHA-2.A, CHA-2.B, CHA-3.A, CHA-3.B, FUN-3.A, FUN-2.A, CHA-3.B, FUN-3.A, FUN-3.C, CHA-3.B, FUN-3.B, FUN-3.C, CHA-3.B, FUN-3.C, E2.1The Chain Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.2FUN-3.B, FUN-3.C, FUN-3.B, FUN-3.C, CHA-3.B, FUN-3.C, CHA-3.B, CHA-3.D, CHA-3.B, CHA-3.D, CHA-	
P.4Inverse FunctionsPrerequisite topicsP.5Exponential and Logarithmic FunctionsPrerequisite topicsChapter 1: Limits and Their Properties1.1CHA-1.A1.2Finding Limits Graphically and Numerically1.2, 1.3, 1.4, 1.9LIM-1.A, LIM-1.B, LIM-1.C1.3Evaluating Limits Analytically 1.41.2, 1.5, 1.6, 1.7, 1.8, 1.9LIM-1.B, LIM-1.D, LIM-1.E1.4Continuity and One-Sided Limits1.3, 1.5, 1.10, 1.11, 1.12, 1.13, 1.16LIM-2.C, FUN-1.A1.5Infinite Limits1.9, 1.10, 1.14LIM-2.D, LIM-2.D1.6Limits at Infinity1.9, 1.15LIM-2.DChapter 2:Differentiation2.1, 2.2, 2.3, 2.4, 2.7, 4.1CHA-2.B, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.A, EI2.1The Derivative and the Tangent Line Problem2.1, 2.5, 2.6, 2.7, 4.1, 4.2CHA-2.A, CHA-2.B, CHA-3.A, CHA-3.B, FUN-3.A, FUN-3.A, CHA-3.B, FUN-3.A, FUN-3.A, CHA-3.B, FUN-3.F, CHA-3.B, CHA-3.B, FUN-3.F, CHA-3.B, CHA-3.B, FUN-3.F, CHA-3.B, CHA-3.B, FUN-3.F, CHA-3.B, CHA-3.B, FUN-3.F, CHA-3.B, CHA-3.B, FUN-3.F, CHA-3.B, CHA-3.B, FUN-3.F, CHA-3.D, C2.4The Chain Rule2.7, 3.1, 3.5FUN-3.B, FUN-3.F, CHA-3.D, C2.5Implicit Differentiation S1.2, 5.12S1.2, 5.2, 5.4, 5.5, 5.12FUN-3.B, CHA-3.C, CHA-3.D, C2.8Newton's MethodS2, 5.4, 5.5, 5.12FUN-4.A, FUN-4.D3.1Extrema on an Interval Mean Value Theorem5.3FUN-4.A3.3Increasing and Decreasing Functions and the first Derivative Test5.3FUN-4.A3.4Concavity and the	
P.5Exponential and Logarithmic FunctionsPrerequisite topicsChapter 1: Limits and Their Properties1.1A Preview of Calculus1.1CHA-1.A1.2Finding Limits Graphically and Numerically1.2, 1.3, 1.4, 1.9LIM-1.A, LIM-1.B, LIM-1.C1.3Evaluating Limits Analytically 1.31.2, 1.5, 1.6, 1.7, 1.8, 1.9LIM-1.A, LIM-1.D, LIM-1.E1.4Continuity and One-Sided Limits1.3, 1.5, 1.10, 1.11, 1.12, 1.13, 1.16LIM-2.B, LIM-2.C, FUN-1.A1.5Infinite Limits1.9, 1.10, 1.14LIM-2.A, LIM-2.D1.6Limits at Infinity1.9, 1.10, 1.14LIM-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.DChapter 2: Differentiation2.1The Derivative and the Tangent Rates of Change2.1, 2.2, 2.3, 2.4, 2.7, 4.1CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-3.A, FUN-3.A, FUN-3.A, A2.3Product and Quotient Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.2FUN-3.B, FUN-3.A, FUN-3.F, CHA-3.B, FUN-3.F, CHA-3.B, FUN-3.F, CHA-3.B, FUN-3.C2.4The Chain Rule2.7, 3.1, 3.5FUN-3.A, FUN-3.C2.5Implicit Differentiation3.2, 5.12FUN-3.B, FUN-3.C2.6Derivatives of Inverse Functions3.3, 3.4, 3.5FUN-3.B2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.C, CHA-3.D, C2.8Newton's Method5.1FUN-1.BMean Value Theorem3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2	
Chapter 1: Limits and Their Properties 1.1 A Preview of Calculus 1.1 CHA-1.A 1.2 Finding Limits Graphically and Numerically 1.2, 1.3, 1.4, 1.9 LIM-1.A, LIM-1.B, LIM-1.C 1.3 Evaluating Limits Analytically 1.2, 1.5, 1.6, 1.7, 1.8, 1.9 LIM-1.B, LIM-1.D, LIM-1.E 1.4 Continuity and One-Sided Limits 1.3, 1.5, 1.10, 1.11, 1.12, 1.13, 1.16 LIM-1.C, LIM-1.D, LIM-2.A, LIM-2.C, FUN-1.A 1.5 Infinite Limits 1.9, 1.10, 1.14 LIM-2.A, LIM-2.D 1.6 Limits at Infinity 1.9, 1.15 LIM-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-3.A, FUN-3.B, FUN-3.B, FUN-3.B, FUN-3.B, FUN-3.B, FUN-3.B, FUN-3.B, FUN-3.B, FUN-3.B, FUN-3.C, CHA-3.B, FUN-3.C, S. 2.3 Product and Quotient Rules and Higher-Order Derivatives 2.8, 2.9, 2.10, 3.6, 4.2 FUN-3.A, FUN-3.C 2.4 The Chain Rule 2.7, 3.1, 3.5 FUN-3.A, FUN-3.C E 2.4 The Chain Rule 2.7, 3.1, 3.5 FUN-3.A, FUN-3.C E 2.5 Implicit Differentiation 3.2, 5.12 FUN-3.A, FUN-3.C E 2.6 Derivatives of Inverse Functions	
1.1A Preview of Calculus1.1CHA-1.A1.2Finding Limits Graphically and Numerically1.2, 1.3, 1.4, 1.9LIM-1.A, LIM-1.B, LIM-1.C1.3Evaluating Limits Analytically1.2, 1.5, 1.6, 1.7, 1.8, 1.9LIM-1.A, LIM-1.D, LIM-1.C1.4Continuity and One-Sided Limits1.3, 1.5, 1.10, 1.11, 1.12, 1.13, 1.16LIM-1.D, LIM-2.A, LIM-2.D, LIM-2.A, LIM-2.C, FUN-1.A1.5Infinite Limits1.9, 1.10, 1.14LIM-2.C, FUN-1.A1.6Limits at Infinity1.9, 1.15LIM-2.DChapter 2: Differentiation2.1The Derivative and the Tangent Rates of Change2.1, 2.2, 2.3, 2.4, 2.7, 4.1CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.A, F2.3Product and Quotient Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.2FUN-3.B, FUN-3.A2.4The Chain Rule2.7, 3.1, 3.5FUN-3.A, FUN-3.C2.5Implicit Differentiation3.2, 5.12FUN-3.B, CHA-3.C, CHA-3.D, C2.6Derivatives of Inverse Functions3.3, 3.4, 3.5FUN-3.E2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.C, CHA-3.D, C2.8Newton's Method5.1FUN-1.BChapter 3: Applications of Differentiation3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.3FUN-4.A3.4Concavity and the Second Derivative Test5.6, 5.7FUN-4.A	
1.2 Finding Limits Graphically and Numerically 1.2, 1.3, 1.4, 1.9 LIM-1.A, LIM-1.B, LIM-1.C 1.3 Evaluating Limits Analytically 1.2, 1.5, 1.6, 1.7, 1.8, 1.9 LIM-1.B, LIM-1.D, LIM-1.E 1.4 Continuity and One-Sided Limits 1.3, 1.5, 1.10, 1.11, 1.12, 1.3, 1.5, 1.10, 1.11, 1.12, LIM-1.C, LIM-1.D, LIM-2.A, LIM-2.D, LIM-2.C, FUN-1.A 1.5 Infinite Limits 1.9, 1.10, 1.14 LIM-2.A, LIM-2.D 1.6 Limits at Infinity 1.9, 1.15 LIM-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.A, F 2.1 The Derivative and the Tangent Line Problem 2.1, 2.2, 2.3, 2.4, 2.7, 4.1 CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-3.A, FUN-3.A, FUN-3.A, FUN-3.A 2.2 Basic Differentiation Rules and Rates of Change 2.1, 2.5, 2.6, 2.7, 4.1, 4.2 CHA-2.A, CHA-2.B, CHA-3.A, CHA-3.B, FUN-3.A, FUN-3.A 2.3 Product and Quotient Rules and Higher-Order Derivatives 2.8, 2.9, 2.10, 3.6, 4.2 FUN-3.B, FUN-3.F, CHA-3.B 2.4 The Chain Rule 2.7, 3.1, 3.5 FUN-3.A, FUN-3.C 2.5 Implicit Differentiation 3.2, 5.12 FUN-3.B, CHA-3.C, CHA-3.D, C 2.6 Derivatives of Inverse Functions 3.3, 3.4, 3.5 FUN-3.B, CHA-3.C, CHA-3.D, C 2.8 Newton's Method S.1 FUN-1.C, FUN-4.A, FUN-4	
and Numerically1.3Evaluating Limits Analytically1.2, 1.5, 1.6, 1.7, 1.8, 1.9LIM-1.B, LIM-1.D, LIM-1.E1.4Continuity and One-Sided Limits1.3, 1.5, 1.10, 1.11, 1.12, 1.13, 1.16LIM-1.C, LIM-1.D, LIM-2.A, LIM-2.C, FUN-1.A1.5Infinite Limits1.9, 1.10, 1.14LIM-2.A, LIM-2.D1.6Limits at Infinity1.9, 1.15LIM-2.DChapter 2: Differentiation2.1The Derivative and the Tangent Line Problem2.1, 2.2, 2.3, 2.4, 2.7, 4.1CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.A, F2.1The Derivative and the Tangent Rates of Change2.1, 2.5, 2.6, 2.7, 4.1, 4.2CHA-2.A, CHA-2.B, CHA-3.A, FUN-2.A, F2.2Basic Differentiation Rules and Rates of Change2.8, 2.9, 2.10, 3.6, 4.2FUN-3.B, FUN-3.F, CHA-3.B2.3Product and Quotient Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.2FUN-3.A, FUN-3.C2.4The Chain Rule2.7, 3.1, 3.5FUN-3.A, FUN-3.C2.5Implicit Differentiation 3.2, 5.12S.2, 5.12FUN-3.B, CHA-3.C, CHA-3.B, CHA-3.C, CHA-3.B, CHA-3.C, CHA-3.B, CHA-3.C, CHA-3.B, CHA-3.C, CHA-3.D, CChapter 3: Applications of Differentiation Mean Value Theorem3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.1FUN-1.B3.3Increasing and Decreasing Functions and the First Derivative Test5.3FUN-4.A3.4Concavity and the Second Derivative Test5.6, 5	
1.4Continuity and One-Sided Limits1.3, 1.5, 1.10, 1.11, 1.12, 1.13, 1.16LIM-1.C, LIM-1.D, LIM-2.A, LIM-2.C, FUN-1.A1.5Infinite Limits1.9, 1.10, 1.14LIM-2.A, LIM-2.D1.6Limits at Infinity1.9, 1.15LIM-2.DChapter 2: Differentiation2.1The Derivative and the Tangent Line Problem2.1, 2.2, 2.3, 2.4, 2.7, 4.1CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.A, F2.2Basic Differentiation Rules and Rates of Change2.1, 2.5, 2.6, 2.7, 4.1, 4.2CHA-2.A, CHA-2.B, CHA-3.A, CHA-3.B, FUN-3.A2.3Product and Quotient Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.2FUN-3.B, FUN-3.F, CHA-3.B2.4The Chain Rule2.7, 3.1, 3.5FUN-3.B, FUN-3.C2.5Implicit Differentiation 3.2, 5.12S.3, 3.4, 3.5FUN-3.E2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.C, CHA-3.D, C2.8Newton's Method5.1FUN-1.C, FUN-4.A, FUN-4.D3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.1FUN-1.B3.3Increasing and Decreasing Functions and the First Derivative Test5.6, 5.7FUN-4.A	
1.13, 1.16 LIM-2.B, LIM-2.C, FUN-1.A 1.5 Infinite Limits 1.9, 1.10, 1.14 LIM-2.A, LIM-2.D 1.6 Limits at Infinity 1.9, 1.15 LIM-2.D Chapter 2: Differentiation 2.1 The Derivative and the Tangent Line Problem 2.1, 2.2, 2.3, 2.4, 2.7, 4.1 CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.A, F 2.2 Basic Differentiation Rules and Rates of Change 2.1, 2.5, 2.6, 2.7, 4.1, 4.2 CHA-2.A, CHA-2.B, CHA-3.A, FUN-2.A, F 2.3 Product and Quotient Rules and Higher-Order Derivatives 2.8, 2.9, 2.10, 3.6, 4.2 FUN-3.B, FUN-3.F, CHA-3.B, FUN-3.A, FUN-3.C 2.4 The Chain Rule 2.7, 3.1, 3.5 FUN-3.D, FUN-4.E 2.6 Derivatives of Inverse Functions 3.3, 3.4, 3.5 FUN-3.B, CHA-3.C, CHA-3.D, C 2.8 Newton's Method 2.2 Related Rates 4.2, 4.3, 4.4, 4.5 CHA-3.B, CHA-3.C, CHA-3.D, C 2.8 Newton's Method 5.1 FUN-1.C, FUN-4.A, FUN-4.D 5.1 3.1 Extrema on an Interval 5.2, 5.4, 5.5, 5.12 FUN-1.C, FUN-4.A, FUN-4.D 3.2 Rolle's Theorem and the Mean Value Theorem 5.1 FUN-1.B 3.3 Increasing and Decreasing Functions and the Fi	
1.6Limits at Infinity1.9, 1.15LIM-2.DChapter 2: Differentiation2.1The Derivative and the Tangent Line Problem2.1, 2.2, 2.3, 2.4, 2.7, 4.1CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.A, F2.2Basic Differentiation Rules and Rates of Change2.1, 2.5, 2.6, 2.7, 4.1, 4.2CHA-2.A, CHA-2.B, CHA-3.A, CHA-3.B, FUN-3.A, FUN-3.A, FUN-3.A, FUN-3.B, FUN-3.F, CHA-3.B, FUN-3.F, CHA-3.B, FUN-3.F, CHA-3.B, FUN-3.F, CHA-3.B, 	
Chapter 2: Differentiation2.1The Derivative and the Tangent Line Problem2.1, 2.2, 2.3, 2.4, 2.7, 4.1CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.A, FE2.2Basic Differentiation Rules and Rates of Change2.1, 2.5, 2.6, 2.7, 4.1, 4.2CHA-2.A, CHA-2.B, CHA-3.A, CHA-3.B, FUN-3.A, FUN-3.B, FUN-3.A,2.3Product and Quotient Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.2FUN-3.B, FUN-3.F, CHA-3.B2.4The Chain Rule2.7, 3.1, 3.5FUN-3.A, FUN-3.C2.5Implicit Differentiation3.2, 5.12FUN-3.D, FUN-4.E2.6Derivatives of Inverse Functions3.3, 3.4, 3.5FUN-3.E2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.C, CHA-3.D, C2.8Newton's Method5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.B3.3Increasing and Decreasing Functions and the First Derivative Test5.3FUN-4.A	
2.1The Derivative and the Tangent Line Problem2.1, 2.2, 2.3, 2.4, 2.7, 4.1CHA-2.A, CHA-2.B, CHA-2.C, CHA-2.D, CHA-3.A, FUN-2.A, F2.2Basic Differentiation Rules and Rates of Change2.1, 2.5, 2.6, 2.7, 4.1, 4.2CHA-2.A, CHA-2.B, CHA-3.A, CHA-3.B, FUN-3.A,2.3Product and Quotient Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.2FUN-3.B, FUN-3.F, CHA-3.B2.4The Chain Rule2.7, 3.1, 3.5FUN-3.A, FUN-3.C2.5Implicit Differentiation3.2, 5.12FUN-3.D, FUN-4.E2.6Derivatives of Inverse Functions3.3, 3.4, 3.5FUN-3.B, CHA-3.C, CHA-3.D, C2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.C, CHA-3.D, C2.8Newton's Method5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.3FUN-4.A3.4Concavity and the Second Derivative Test5.6, 5.7FUN-4.A	
Line ProblemCHA-2.D, CHA-3.A, FUN-2.A, F2.2Basic Differentiation Rules and Rates of Change2.1, 2.5, 2.6, 2.7, 4.1, 4.2CHA-2.A, CHA-2.B, CHA-3.A, CHA-3.B, FUN-3.A2.3Product and Quotient Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.2FUN-3.B, FUN-3.F, CHA-3.B2.4The Chain Rule2.7, 3.1, 3.5FUN-3.A, FUN-3.C2.5Implicit Differentiation3.2, 5.12FUN-3.D, FUN-4.E2.6Derivatives of Inverse Functions3.3, 3.4, 3.5FUN-3.E2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.C, CHA-3.D, C2.8Newton's Method5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.3FUN-4.A3.3Increasing and Decreasing Functions and the First Derivative Test5.6, 5.7FUN-4.A	
Rates of ChangeCHA-3.B, FUN-3.A2.3Product and Quotient Rules and Higher-Order Derivatives2.8, 2.9, 2.10, 3.6, 4.2FUN-3.B, FUN-3.F, CHA-3.B2.4The Chain Rule2.7, 3.1, 3.5FUN-3.A, FUN-3.C2.5Implicit Differentiation3.2, 5.12FUN-3.D, FUN-4.E2.6Derivatives of Inverse Functions3.3, 3.4, 3.5FUN-3.E2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.D, CHA-3.D, C2.8Newton's MethodFUN-3.EChapter 3: Applications of Differentiation3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.1FUN-1.B3.3Increasing and Decreasing Functions and the First Derivative Test5.6, 5.7FUN-4.A	
Higher-Order Derivatives2.4The Chain Rule2.7, 3.1, 3.5FUN-3.A, FUN-3.C2.5Implicit Differentiation3.2, 5.12FUN-3.D, FUN-4.E2.6Derivatives of Inverse Functions3.3, 3.4, 3.5FUN-3.E2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.C, CHA-3.D, C2.8Newton's MethodChapter 3: Applications of Differentiation3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.1FUN-1.B3.3Increasing and Decreasing Functions and the First Derivative Test5.3FUN-4.A3.4Concavity and the Second Derivative Test5.6, 5.7FUN-4.A	
2.5Implicit Differentiation3.2, 5.12FUN-3.D, FUN-4.E2.6Derivatives of Inverse Functions3.3, 3.4, 3.5FUN-3.E2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.C, CHA-3.D, C2.8Newton's Method	
2.6Derivatives of Inverse Functions3.3, 3.4, 3.5FUN-3.E2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.C, CHA-3.D, C2.8Newton's MethodCHapter 3: Applications of Differentiation3.1Extrema on an Interval3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.1FUN-1.B3.3Increasing and Decreasing Functions and the First Derivative Test5.3FUN-4.A3.4Concavity and the Second Derivative Test5.6, 5.7FUN-4.A	
2.7Related Rates4.2, 4.3, 4.4, 4.5CHA-3.B, CHA-3.C, CHA-3.D, C2.8Newton's MethodChapter 3: Applications of Differentiation3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.1FUN-1.B3.3Increasing and Decreasing Functions and the First Derivative Test5.3FUN-4.A3.4Concavity and the Second Derivative Test5.6, 5.7FUN-4.A	
2.8 Newton's Method Chapter 3: Applications of Differentiation 3.1 Extrema on an Interval 5.2, 5.4, 5.5, 5.12 FUN-1.C, FUN-4.A, FUN-4.D 3.2 Rolle's Theorem and the Mean Value Theorem 5.1 FUN-1.B 3.3 Increasing and Decreasing Functions and the First Derivative Test 5.3 FUN-4.A 3.4 Concavity and the Second Derivative Test 5.6, 5.7 FUN-4.A	
Chapter 3: Applications of Differentiation3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.1FUN-1.B3.3Increasing and Decreasing Functions and the First Derivative Test5.3FUN-4.A3.4Concavity and the Second Derivative Test5.6, 5.7FUN-4.A	CHA-3.E
3.1Extrema on an Interval5.2, 5.4, 5.5, 5.12FUN-1.C, FUN-4.A, FUN-4.D3.2Rolle's Theorem and the Mean Value Theorem5.1FUN-1.B3.3Increasing and Decreasing Functions and the First Derivative Test5.3FUN-4.A3.4Concavity and the Second Derivative Test5.6, 5.7FUN-4.A	
3.2Rolle's Theorem and the Mean Value Theorem5.1FUN-1.B3.3Increasing and Decreasing Functions and the First Derivative Test5.3FUN-4.A3.4Concavity and the Second Derivative Test5.6, 5.7FUN-4.A	
Mean Value Theorem3.3 Increasing and Decreasing Functions and the First Derivative Test5.3FUN-4.A3.4 Concavity and the Second Derivative Test5.6, 5.7FUN-4.A	
and the First Derivative Test5.6, 5.7FUN-4.A3.4Concavity and the Second Derivative Test5.6, 5.7FUN-4.A	
•	
3.5 A Summary of Curve Sketching 5.8, 5.9 FUN-4.A	
3.6 Optimization Problems 5.10, 5.11 FUN-4.B, FUN-4.C	
3.7 Differentials 4.6 CHA-3.F	

Less	son	Topic(s)	Learning Objective(s)			
Chapter 4: Integration						
4.1	Antiderivatives and Indefinite Integration	6.7, 6.8, 6.14, 7.1, 7.6, 7.7	FUN-6.B, FUN-6.C, FUN-7.A, FUN-7.D, FUN-7.E			
4.2	Area	6.1	CHA-4.A			
4.3	Riemann Sums and Definite Integrals	6.2, 6.3, 6.6, 6.8	LIM-5.A, LIM-5.B, LIM-5.C, FUN-6.A, FUN-6.C			
4.4	The Fundamental Theorem of Calculus	6.1, 6.4, 6.5, 6.6, 6.7, 8.1, 8.3	CHA-4.A, CHA-4.B, CHA-4.D, FUN-5.A, FUN-6.A, FUN-6.B			
4.5	The Net Change Theorem	6.1, 8.2, 8.3	CHA-4.A, CHA-4.C, CHA-4.D, CHA-4.E			
4.6	Integration by Substitution	6.9	FUN-6.D			
4.7	The Natural Logarithmic Function: Integration	6.10	FUN-6.D			
4.8	Inverse Trigonometric Functions: Integration	6.10, 6.14	FUN-6.D			
Chap	ter 5: Differential Equations					
5.1	Slope Fields and Euler's Method	7.1, 7.2, 7.3, 7.4, 7.5, 7.7	FUN-7.A, FUN-7.B, FUN-7.C, FUN-7.E			
5.2	Growth and Decay	7.6, 7.7, 7.8	FUN-7.D, FUN-7.E, FUN-7.F, FUN-7.G			
5.3	Separation of Variables	7.6, 7.7	FUN-7.D, FUN-7.E			
5.4	The Logistic Equation	7.9	FUN-7.H			
Chap	ter 6: Applications of Integration					
6.1	Area of a Region Between Two Curves	8.4, 8.5, 8.6	CHA-5.A			
6.2	Volume: The Disk and Washer Methods	8.7, 8.8, 8.9, 8.10, 8.11, 8.12	CHA-5.B, CHA-5.C			
6.3	Volume: The Shell Method					
6.4	Arc Length and Surfaces of Revolution	8.13	CHA-6.A			
Chap	ter 7: Integration Techniques, L'Hôpital's F	Rule, and Improper Integrals				
7.1	Basic Integration Rules	6.9, 6.10, 6.14	FUN-6.D			
7.2	Integration by Parts	6.11, 6.14	FUN-6.E			
7.3	Trigonometric Integrals	6.14				
7.4	Trigonometric Substitution	6.14				
7.5	Partial Fractions	6.12, 6.14	FUN-6.F			
7.6	Integration by Tables and Other Integration Techniques	6.14				
7.7	Indeterminate Forms and L'Hôpital's Rule	4.7	LIM-4.A			
1.1						

.esso	on	Topic(s)	Learning Objective(s)
napt	er 8: Infinite Series		
8.1	Sequences		
8.2	Series and Convergence	10.1, 10.2, 10.3	LIM-7.A
8.3	The Integral Test and <i>p</i> -Series	10.4, 10.5	LIM-7.A
8.4	Comparisons of Series	10.6	LIM-7.A
8.5	Alternating Series	10.7, 10.9, 10.10	LIM-7.A, LIM-7.B
8.6	The Ratio and Root Tests	10.8	LIM-7.A
8.7	Taylor Polynomials and Approximations	10.11, 10.12	LIM-8.A, LIM-8.B, LIM-8.C
8.8	Power Series	10.13	LIM-8.D
8.9	Representation of Functions by Power Series	10.12, 10.14, 10.15	LIM-8.C, LIM-8.F, LIM-8.G
8.10	Taylor and Maclaurin Series	10.13, 10.14	LIM-8.D, LIM-8.E, LIM-8.F
napt	er 9: Parametric Equations, Polar Coordina	ates, and Vectors	
9.1	Conics and Calculus		
9.2	Plane Curves and Parametric Equations		
9.3	Parametric Equations and Calculus	9.1, 9.2, 9.3	CHA-3.G, CHA-6.B
9.4	Polar Coordinates and Polar Graphs	9.7	FUN-3.G
9.5	Area and Arc Length in Polar Coordinates	9.8, 9.9	CHA-5.D
9.6	Vectors in the Plane		
9.7	Vector-Valued Functions	9.4, 9.5	CHA-3.H, FUN-8.A
9.8	Velocity and Acceleration	9.6	FUN-8.B

Correlation from College Board AP[®] Calculus AB and AP[®] Calculus BC Framework to *Calculus for AP[®]*

Course: AP[®] Calculus AB and BC **Unit 1:** Limits and Continuity

Suggested Length: AB ~22-23 class periods BC ~13-14 class periods AP Exam Weighting: AB $10\mathchar`-12\%$ BC $4\mathchar`-7\%$

Big Ideas: Change (CHA); Limits (LIM); Analysis of Functions (FUN)

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
1.1: Introducing Calculus: Can	CHA-1: Calculus allows us to generalize knowledge about motion to diverse problems involving change.	CHA-1.A.1	1.1, pp. 58-59
Change Occur at an Instant?	CHA-1.A: Interpret the rate of change at an instant in terms of average rates of change over intervals containing that instant.	CHA-1.A.2	1.1, pp. 58-59
	Tates of change over intervals containing that instant.	CHA-1.A.3	1.1, pp. 58-59
1.2: Defining Limits and Using Limit Notation	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits.LIM-1.A: Represent limits analytically using correct notation.	LIM-1.A.1	1.2, p. 65
	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits.LIM-1.B: Interpret limits expressed in analytic notation.	LIM-1.B.1	1.2, pp. 65-71 1.3, pp. 76-83
1.3: Estimating Limit Values from	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits.	LIM-1.C.1	1.4, pp. 89-91
Graphs	LIM-1.C: Estimate limits of functions.	LIM-1.C.2	1.2, p. 66
		LIM-1.C.3	1.2, p. 68
		LIM-1.C.4	1.2, pp. 67-68
1.4: Estimating Limit Values from Tables	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits.LIM-1.C: Estimate limits of functions.	LIM-1.C.5	1.2, p. 66
1.5: Determining Limits Using Algebraic	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits.	LIM-1.D.1	1.4, pp. 89-91
Properties of Limits	LIM-1.D: Determine the limits of functions using limit theorems.	LIM-1.D.2	1.3, pp. 76-78
1.6: Determining Limits Using Algebraic Manipulation	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits.LIM-1.E: Determine the limits of functions using equivalent expressions for the function or the squeeze theorem.	LIM-1.E.1	1.3, pp. 79-83

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
1.7: Selecting Procedures for Determining Limits			1.3, p. 79
1.8: Determining Limits Using the Squeeze Theorem	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits.LIM-1.E: Determine the limits of functions using equivalent expressions for the function or the squeeze theorem.	LIM-1.E.2	1.3, pp. 82-83
1.9: Connecting Multiple Representations of Limits			1.2, p. 66, Example 1 1.3, p. 83, Example 9 1.5, p. 101, Example 1 1.6, p. 110, Example 2
1.10: Exploring Types of Discontinuities	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.LIM-2.A: Justify conclusions about continuity at a point using the definition.	LIM-2.A.1	1.4, p. 88 1.5, pp. 102-104
1.11: Defining Continuity at a Point	 LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity. LIM-2.A: Justify conclusions about continuity at a point using the definition. 	LIM-2.A.2	1.4, pp. 87-88
1.12: Confirming Continuity over an	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.B.1	1.4, pp. 87-95
Interval	LIM-2.B: Determine intervals over which a function is continuous.	LIM-2.B.2	1.4, p. 92
1.13: Removing Discontinuities	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.C.1	1.4, p. 88
	LIM-2.C: Determine values of <i>x</i> or solve for parameters that make discontinuous functions continuous, if possible.	LIM-2.C.2	1.4, p. 88
1.14: Connecting Infinite Limits	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.D.1	1.5, pp. 100-104
and Vertical Asymptotes	LIM-2.D: Interpret the behavior of functions using limits involving infinity.	LIM-2.D.2	1.5, pp. 100-104
1.15: Connecting Limits at Infinity	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity.	LIM-2.D.3	1.6, pp. 108-114
and Horizontal Asymptotes	LIM-2.D: Interpret the behavior of functions using limits involving	LIM-2.D.4	1.6, pp. 108-114
	infinity.	LIM-2.D.5	1.6, pp. 108-114
1.16: Working with the Intermediate Value Theorem (IVT)	 FUN-1: Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior. FUN-1.A: Explain the behavior of a function on an interval using the Intermediate Value Theorem. 	FUN-1.A.1	1.4, pp. 94-95

Course: AP® Calculus AB and BC

Unit 2: Differentiation: Definition and Fundamental Properties

Suggested Length:AB ~13-14 class periodsAP Exam Weighting:AB 10-12%BC ~9-10 class periodsBC 4-7%

Big Ideas: Change (CHA); Limits (LIM); Analysis of Functions (FUN)

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
2.1: Defining Average and Instantaneous Rates of Change at a Point	CHA-2: Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals.CHA-2.A: Determine average rates of change using difference quotients.	CHA-2.A.1	2.1, p. 125 2.2, pp. 142-143
	CHA-2: Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals.CHA-2.B: Represent the derivative of a function as the limit of a difference quotient.	CHA-2.B.1	2.1, p. 127 2.2, pp. 142-143
2.2: Defining the Derivative of a	CHA-2: Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals.	CHA-2.B.2	2.1, p. 127
Function and Using Derivative	CHA-2.B: Represent the derivative of a function as the limit of a	CHA-2.B.3	2.1, p. 127
Notation	difference quotient.	CHA-2.B.4	2.1, pp. 127-128
	CHA-2: Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals.CHA-2.C: Determine the equation of a line tangent to a curve at a given point.	CHA-2.C.1	2.1, pp. 124-128
2.3: Estimating Derivatives of a Function at a Point	CHA-2: Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals. CHA-2.D: Estimate derivatives.	CHA-2.D.1	2.1, p. 132, Exercises 1-2 AP Exam Practice Questions for Chapter 2, p. 209, Exercise 8
		CHA-2.D.2	2.1, p. 130
2.4: Connecting Differentiability and Continuity:	FUN-2: Recognizing that a function's derivative may also be a function allows us to develop knowledge about the related behaviors of both.	FUN-2.A.1	2.1, pp. 129-130
Determining When Derivatives Do and Do Not Exist	FUN-2.A: Explain the relationship between differentiability and continuity.	FUN-2.A.2	2.1, pp. 129-130
2.5: Applying the Power Rule	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.FUN-3.A: Calculate derivatives of familiar functions.	FUN-3.A.1	2.2, pp. 136-137
2.6: Derivative Rules: Constant,	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.A.2	2.2, pp. 135, 138-139
Sum, Difference, and Constant Multiple	FUN-3.A: Calculate derivatives of familiar functions.	FUN-3.A.3	2.2, p. 139

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
2.7: Derivatives of $\cos x$, $\sin x$, e^x , and $\ln x$	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.A.4	2.2, pp. 140-141 2.4, pp. 165-168
	FUN-3.A: Calculate derivatives of familiar functions.		
	LIM-3: Reasoning with definitions, theorems, and properties can be used to determine a limit.	LIM-3.A.1	2.1, p. 127
	LIM-3.A: Interpret a limit as a definition of a derivative.		
2.8: The Product Rule	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.B.1	2.3, pp. 148-149
	FUN-3.B: Calculate derivatives of products and quotients of differentiable functions.	FUN-S.D.I	2.3, pp. 146-149
2.9: The Quotient Rule	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.		2.3, pp. 150-152
	FUN-3.B: Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B.2	
2.10: Finding the Derivatives	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.		
of Tangent, Cotangent, Secant, and/or Cosecant Functions	FUN-3.B: Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B.3	2.3, pp. 152-153

Course: AP[®] Calculus AB and BC

Unit 3: Differentiation: Composite, Implicit, and Inverse Functions

Suggested Length:	AB ~10-11 class periods	AP Exam Weighting:	AB 9-13%
	BC ~8-9 class periods		BC 4-7%

Big Ideas: Analysis of Functions (FUN)

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
3.1: The Chain Rule	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.FUN-3.C: Calculate derivatives of compositions of differentiable functions.	FUN-3.C.1	2.4, pp. 159-168
3.2: Implicit Differentiation	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.FUN-3.D: Calculate derivatives of implicitly defined functions.	FUN-3.D.1	2.5, pp. 174-179
3.3: Differentiating Inverse Functions	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.FUN-3.E: Calculate derivatives of inverse and inverse trigonometric functions.	FUN-3.E.1	2.6, pp. 183-186

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
3.4: Differentiating Inverse Trigonometric Functions	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.FUN-3.E: Calculate derivatives of inverse and inverse trigonometric functions.	FUN-3.E.2	2.6, pp. 184-186
3.5: Selecting Procedures for Calculating Derivatives			2.4, p. 168 2.6, p. 186
3.6: Calculating Higher-Order	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.F.1	2.3, p. 153
Derivatives	FUN-3.F: Determine higher-order derivatives of a function.	FUN-3.F.2	2.3, p. 153

Course: AP[®] Calculus AB and BC **Unit 4:** Contextual Applications of Differentiation

Suggested Length: AB ~10-11 class periods BC ~6-7 class periods AP Exam Weighting: AB 10-15% BC 6-9%

Big Ideas: Change (CHA); Limits (LIM)

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
4.1: Interpreting the Meaning of	CHA-3: Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.A.1	2.1, p. 127
the Derivative in Context	CHA-3.A: Interpret the meaning of a derivative in context.	CHA-3.A.2	2.2, pp. 142-143
		CHA-3.A.3	2.2, pp. 142-143
4.2: Straight- Line Motion: Connecting Position, Velocity, and Acceleration	CHA-3: Derivatives allow us to solve real-world problems involving rates of change.CHA-3.B: Calculate rates of change in applied contexts.	CHA-3.B.1	2.2, pp. 142-143 2.3, p. 154 2.7, pp. 193-194
4.3: Rates of Change in Applied Contexts Other Than Motion	CHA-3: Derivatives allow us to solve real-world problems involving rates of change.CHA-3.C: Interpret rates of change in applied contexts.	CHA-3.C.1	2.7, pp. 191-192
4.4: Introduction to Related Rates	CHA-3: Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.D.1	2.7, pp. 190-194
	CHA-3.D: Calculate related rates in applied contexts.	CHA-3.D.2	2.7, pp. 190-194
4.5: Solving Related Rates	CHA-3: Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.E.1	2.7, pp. 190-194
Problems	CHA-3.E: Interpret related rates in applied contexts.		

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
4.6: Approximating Values of a	CHA-3: Derivatives allow us to solve real-world problems involving rates of change.CHA-3.F: Approximate a value on a curve using the equation of a	CHA-3.F.1	3.7, pp. 267-271
Function Using Local Linearity and Linearization	tangent line.	CHA-3.F.2	3.7, pp. 267-271
4.7: Using L'Hospital's Rule for Determining	LIM-4: L'Hospital's rule allows us to determine the limits of some indeterminate forms.	LIM-4.A.1	7.7, p. 506
Limits of Indeterminate Forms	forms.	LIM-4.A.2	7.7, pp. 507-509

Course: AP[®] Calculus AB and BC **Unit 5:** Analytical Applications of Differentiation

Suggested Length:	AB ~15-16 class periods	AP Exam Weighting:	AB 15-18%
	BC ~10-11 class periods		BC 8-11%

Big Ideas: Analysis of Functions (FUN)

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
5.1: Using the Mean Value Theorem	FUN-1: Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior.FUN-1.B: Justify conclusions about functions by applying the Mean Value Theorem over an interval.	FUN-1.B.1	3.2, pp. 222-223
5.2: Extreme Value Theorem, Global Versus Local Extrema, and Critical Points	FUN-1: Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior.FUN-1.C: Justify conclusions about functions by applying the Extreme Value Theorem.	FUN-1.C.1	3.1, p. 212
5.3: Determining Intervals on Which a Function Is Increasing or Decreasing	FUN-4: A function's derivative can be used to understand some behaviors of the function.FUN-4.A: Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.1	3.3, pp. 227-232
5.4: Using the First Derivative Test to Determine Relative (Local) Extrema	FUN-4: A function's derivative can be used to understand some behaviors of the function.FUN-4.A: Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.2	3.1, pp. 212-216
5.5: Using the Candidates Test to Determine Absolute (Global) Extrema	FUN-4: A function's derivative can be used to understand some behaviors of the function.FUN-4.A: Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.3	3.1, pp. 212-216

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
5.6: Determining Concavity of	FUN-4: A function's derivative can be used to understand some behaviors of the function.	FUN-4.A.4	3.4, p. 237
Functions over Their Domains	FUN-4.A: Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.5	3.4, pp. 238-241
		FUN-4.A.6	3.4, pp. 239-240
5.7: Using the Second Derivative	FUN-4: A function's derivative can be used to understand some behaviors of the function.	FUN-4.A.7	3.4, p. 241
Test to Find Extrema	FUN-4.A: Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.8	3.4, p. 241
5.8: Sketching Graphs of	FUN-4: A function's derivative can be used to understand some behaviors of the function.	FUN-4.A.9	3.5, pp. 245-252
Functions and Their Derivatives	FUN-4.A: Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.10	3.5, pp. 245-252
5.9: Connecting a Function, Its First Derivative, and Its Second Derivative	FUN-4: A function's derivative can be used to understand some behaviors of the function.FUN-4.A: Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.11	3.5, pp. 245-252
5.10: Introduction to Optimization Problems	FUN-4: A function's derivative can be used to understand some behaviors of the function.FUN-4.B: Calculate minimum and maximum values in applied contexts or analysis of functions.	FUN-4.B.1	3.6, pp. 257-261
5.11: Solving Optimization Problems	FUN-4: A function's derivative can be used to understand some behaviors of the function.FUN-4.C: Interpret minimum and maximum values calculated in applied contexts.	FUN-4.C.1	3.6, pp. 257-261
5.12: Exploring Behaviors of Implicit Relations	FUN-4: A function's derivative can be used to understand some behaviors of the function.FUN-4.D: Determine critical points of implicit relations.	FUN-4.D.1	3.1, pp. 213-216
	FUN-4: A function's derivative can be used to understand some behaviors of the function.	FUN-4.E.1	2.5, pp. 174-179
	FUN-4.E: Justify conclusions about the behavior of an implicitly defined function based on evidence from its derivatives.	FUN-4.E.2	2.5, p. 178

Course: AP[®] Calculus AB and BC **Unit 6:** Integration and Accumulation of Change

Suggested Length:AB ~18-20 class periodsAP Exam Weighting:AB 17-20%BC ~15-16 class periodsBC 17-20%

Big Ideas: Change (CHA); Limits (LIM); Analysis of Functions (FUN)

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
6.1: Exploring Accumulations	CHA-4: Definite integrals allow us to solve problems involving the accumulation of change over an interval.	CHA-4.A.1	4.4, p. 323 4.5, p. 330
of Change	CHA-4.A: Interpret the meaning of areas associated with the graph of a rate of change in context.	CHA-4.A.2	4.2, pp. 292-293
		CHA-4.A.3	4.5, p. 331
		CHA-4.A.4	4.5, p. 330
6.2: Approximating Areas with	LIM-5: Definite integrals can be approximated using geometric and numerical methods.	LIM-5.A.1	4.3, pp. 304-311
Riemann Sums	LIM-5.A: Approximate a definite integral using geometric and numerical methods.	LIM-5.A.2	4.3, pp. 302-305, 309-311
		LIM-5.A.3	4.3, pp. 309-310
		LIM-5.A.4	4.3, pp. 309-310
6.3: Riemann Sums, Summation	LIM-5: Definite integrals can be approximated using geometric and numerical methods.	LIM-5.B.1	4.3, pp. 304-305
Notation, and Definite Integral Notation	LIM-5.B: Interpret the limiting case of the Riemann sum as a definite integral.	LIM-5.B.2	4.3, pp. 302-303
	LIM-5: Definite integrals can be approximated using geometric and numerical methods.	LIM-5.C.1	4.3, p. 304
	LIM-5.C: Represent the limiting case of the Riemann sum as a definite integral.	LIM-5.C.2	4.3, p. 304
6.4: The Fundamental Theorem of	FUN-5: The Fundamental Theorem of Calculus connects differentiation and integration.	FUN-5.A.1	4.4, pp. 323-325
Calculus and Accumulation Functions	FUN-5.A: Represent accumulation functions using definite integrals.	FUN-5.A.2	4.4, pp. 324-325
6.5: Interpreting the Behavior of Accumulation Functions Involving Area	FUN-5: The Fundamental Theorem of Calculus connects differentiation and integration.FUN-5.A: Represent accumulation functions using definite integrals.	FUN-5.A.3	4.4, pp. 323-325
6.6: Applying Properties of	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.	FUN-6.A.1	4.4, pp. 320-321
Definite Integrals	FUN-6.A: Calculate a definite integral using areas and properties of	FUN-6.A.2	4.3, pp. 307-308
	definite integrals.	FUN-6.A.3	4.3, p. 308

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
6.7: The Fundamental	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.	FUN-6.B.1	4.1, pp. 280-281
Theorem of Calculus and	FUN-6.B: Evaluate definite integrals analytically using the Fundamental Theorem of Calculus.	FUN-6.B.2	4.4, pp. 324-325
Definite Integrals		FUN-6.B.3	4.4, pp. 317-319
6.8: Finding Antiderivatives	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.	FUN-6.C.1	4.1, pp. 280-281
and Indefinite Integrals: Basic	FUN-6.C: Determine antiderivatives of functions and indefinite integrals, using knowledge of derivatives.	FUN-6.C.2	4.1, pp. 282-284
Rules and Notation		FUN-6.C.3	4.3, p. 309
6.9: Integrating Using Substitution	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration.FUN-6.D: For integrands requiring substitution or rearrangements	FUN-6.D.1	4.6, pp. 337-342 7.1, pp. 456-459
	(a) Determine indefinite integrals.(b) Evaluate definite integrals.	FUN-6.D.2	4.6, pp. 340-342
6.10: Integrating Functions Using Long Division and Completing the Square	 FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. FUN-6.D: For integrands requiring substitution or rearrangements into equivalent forms: (a) Determine indefinite integrals. (b) Evaluate definite integrals. 	FUN-6.D.3	4.7, p. 349 4.8, p. 358 7.1, pp. 456, 459
6.11: Integrating Using Integration by Parts BC ONLY	 FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. FUN-6.E: For integrands requiring integration by parts: (a) Determine indefinite integrals. BC ONLY (b) Evaluate definite integrals. BC ONLY 	FUN-6.E.1	7.2, pp. 463-468
6.12: Integrating Using Linear Partial Fractions BC ONLY	 FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. FUN-6.F: For integrands requiring integration by linear partial fractions: (a) Determine indefinite integrals. BC ONLY (b) Evaluate definite integrals. BC ONLY 	FUN-6.F.1	7.5, pp. 491-497
6.13: Evaluating Improper Integrals BC ONLY	LIM-6: The use of limits allows us to show that the areas of unbounded regions may be finite.	LIM-6.A.1	7.8, p. 517
	LIM-6.A: Evaluate an improper integral or determine that the integral diverges. BC ONLY	LIM-6.A.2	7.8, pp. 517-523
6.14: Selecting Techniques for Antidifferentiation			4.1, p. 282 4.8, p. 359 7.1, p. 459 7.2-7.6, pp. 463-505

Course: AP[®] Calculus AB and BC **Unit 7:** Differential Equations

Suggested Length: AB ~8-9 class periods BC ~9-10 class periods AP Exam Weighting: AB 6-12% BC 6-9%

Big Ideas: Analysis of Functions (FUN)

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
7.1: Modeling Situations with Differential Equations	FUN-7: Solving differential equations allows us to determine functions and develop models.FUN-7.A: Interpret verbal statements of problems as differential equations involving a derivative expression.	FUN-7.A.1	4.1, p. 281 5.1, p. 370
7.2: Verifying Solutions for Differential Equations	FUN-7: Solving differential equations allows us to determine functions and develop models.FUN-7.B: Verify solutions to differential equations.	FUN-7.B.1 FUN-7.B.2	5.1, pp. 370-371 5.1, pp. 370-371
7.3: Sketching Slope Fields	FUN-7: Solving differential equations allows us to determine functions and develop models.FUN-7.C: Estimate solutions to differential equations.	FUN-7.C.1	5.1, pp. 372-373 5.1, pp. 372-373
7.4: Reasoning Using Slope Fields	FUN-7: Solving differential equations allows us to determine functions and develop models.FUN-7.C: Estimate solutions to differential equations.	FUN-7.C.3	5.1, pp. 370-371
7.5: Approximating Solutions Using Euler's Method BC ONLY	FUN-7: Solving differential equations allows us to determine functions and develop models.FUN-7.C: Estimate solutions to differential equations.	FUN-7.C.4	5.1, p. 374
7.6: Finding General Solutions	FUN-7: Solving differential equations allows us to determine functions and develop models.	FUN-7.D.1	5.2, pp. 379-380, 383 5.3, pp. 387-392
Using Separation of Variables	FUN-7.D: Determine general solutions to differential equations.	FUN-7.D.2	4.1, p. 281 5.2, pp. 379-380, 383 5.3, p. 387
7.7: Finding Particular Solutions Using Initial Conditions and Separation of Variables	FUN-7: Solving differential equations allows us to determine functions and develop models.FUN-7.E: Determine particular solutions to differential equations.	FUN-7.E.1	4.1, p. 285 5.1, pp. 370-371 5.2, pp. 379-380, 383 5.3, pp. 387-388
		FUN-7.E.2	4.1, pp. 285-286 5.3, p. 388
		FUN-7.E.3	5.3, p. 388, Example 3

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
7.8: Exponential Models with	FUN-7: Solving differential equations allows us to determine functions and develop models.	FUN-7.F.1	5.2, pp. 380-383
Differential Equations	FUN-7.F: Interpret the meaning of a differential equation and its variables in context.	FUN-7.F.2	5.2, p. 380
	FUN-7: Solving differential equations allows us to determine functions and develop models.FUN-7.G: Determine general and particular solutions for problems involving differential equations in context.	FUN-7.G.1	5.2, pp. 380-383
7.9: Logistic Models with	FUN-7: Solving differential equations allows us to determine functions and develop models.	FUN-7.H.1	5.4, pp. 397-401
Differential Equations BC ONLY	FUN-7.H: Interpret the meaning of the logistic growth model in	FUN-7.H.2	5.4, pp. 398, 400
	context. BC ONLY	FUN-7.H.3	5.4, p. 401
		FUN-7.H.4	5.4, p. 403, Exercise 31

Course: AP[®] Calculus AB and BC **Unit 8:** Applications of Integration

Suggested Length: AB ~19-20 class periods BC ~13-14 class periods AP Exam Weighting: AB 10-15% BC 6-9%

Big Ideas: Change (CHA)

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
8.1: Finding the Average Value of a Function on an Interval	CHA-4: Definite integrals allow us to solve problems involving the accumulation of change over an interval.CHA-4.B: Determine the average value of a function using definite integrals.	CHA-4.B.1	4.4, pp. 321-322
8.2: Connecting Position, Velocity, and Acceleration of Functions Using Integrals	CHA-4: Definite integrals allow us to solve problems involving the accumulation of change over an interval.CHA-4.C: Determine values for positions and rates of change using definite integrals in problems involving rectilinear motion.	CHA-4.C.1	4.5, pp. 329-330
8.3: Using Accumulation Functions and Definite Integrals in Applied Contexts	CHA-4: Definite integrals allow us to solve problems involving the accumulation of change over an interval.	CHA-4.D.1	4.4, pp. 323-324
	CHA-4.D: Interpret the meaning of a definite integral in accumulation problems.	CHA-4.D.2	4.5, pp. 329-330
	CHA-4: Definite integrals allow us to solve problems involving the accumulation of change over an interval.CHA-4.E: Determine net change using definite integrals in applied contexts.	CHA-4.E.1	4.5, pp. 329-331

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
8.4: Finding the Area Between Curves Expressed as Functions of <i>x</i>	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.CHA-5.A: Calculate areas in the plane using the definite integral.	CHA-5.A.1	6.1, pp. 410-415
8.5: Finding the Area Between Curves Expressed as Functions of <i>y</i>	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.CHA-5.A: Calculate areas in the plane using the definite integral.	CHA-5.A.2	6.1, p. 414
8.6: Finding the Area Between Curves That Intersect at More Than Two Points	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.CHA-5.A: Calculate areas in the plane using the definite integral.	CHA-5.A.3	6.1, pp. 413-414
8.7: Volumes with Cross Sections: Squares and Rectangles	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.CHA-5.B: Calculate volumes of solids with known cross sections using definite integrals.	CHA-5.B.1	6.2, pp. 425-426
8.8: Volumes with Cross Sections:	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.	CHA-5.B.2	6.2, pp. 425-426
Triangles and Semicircles	CHA-5.B: Calculate volumes of solids with known cross sections using definite integrals.	CHA-5.B.3	6.2, pp. 425-426
8.9: Volume with Disc Method: Revolving Around the <i>x</i> - or <i>y</i> -Axis	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.CHA-5.C: Calculate volumes of solids of revolution using definite integrals.	CHA-5.C.1	6.2, pp. 420-422
8.10: Volume with Disc Method: Revolving Around Other Axes	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.CHA-5.C: Calculate volumes of solids of revolution using definite integrals.	CHA-5.C.2	6.2, pp. 420-422
8.11: Volume with Washer Method: Revolving Around the <i>x</i> - or <i>y</i> -Axis	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.CHA-5.C: Calculate volumes of solids of revolution using definite integrals.	CHA-5.C.3	6.2, pp. 423-425
8.12: Volume with Washer Method: Revolving Around Other Axes	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.CHA-5.C: Calculate volumes of solids of revolution using definite integrals.	CHA-5.C.4	6.2, pp. 423-425
8.13: The Arc Length of a Smooth, Planar Curve and Distance Traveled BC ONLY	CHA-6: Definite integrals allow us to solve problems involving the accumulation of change in length over an interval.CHA-6.A: Determine the length of a curve in the plane defined by a function, using a definite integral. BC ONLY	CHA-6.A.1	6.4, pp. 440-443

Course: AP® Calculus BC Only

Unit 9: Parametric Equations, Polar Coordinates, and Vector-Valued Functions

Suggested Length: AB Not Applicable BC ~10-11 class periods AP Exam Weighting: AB Not Applicable BC 11-12%

Big Ideas: Change (CHA); Analysis of Functions (FUN)

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
9.1: Defining and Differentiating Parametric	CHA-3: Derivatives allow us to solve real-world problems involving rates of change.	CHA-3.G.1	9.3, pp. 655-658
Equations BC ONLY	CHA-3.G: Calculate derivatives of parametric functions. BC ONLY	CHA-3.G.2	9.3, pp. 655-658
9.2: Second Derivatives of Parametric Equations BC ONLY	 CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.G: Calculate derivatives of parametric functions. BC ONLY 	CHA-3.G.3	9.3, p. 656
9.3: Finding Arc Lengths of Curves Given by Parametric Equations BC ONLY	CHA-6: Definite integrals allow us to solve problems involving the accumulation of change in length over an interval.CHA-6.B: Determine the length of a curve in the plane defined by parametric functions, using a definite integral. BC ONLY	CHA-6.B.1	9.3, pp. 657-658
9.4: Defining and Differentiating Vector-Valued Functions BC ONLY	 CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.H: Calculate derivatives of vector-valued functions. BC ONLY 	CHA-3.H.1	9.7, pp. 689-693
9.5: Integrating Vector-Valued Functions BC ONLY	 FUN-8: Solving an initial value problem allows us to determine an expression for the position of a particle moving in the plane. FUN-8.A: Determine a particular solution given a rate vector and initial conditions. BC ONLY 	FUN-8.A.1	9.7, p. 694
9.6: Solving Motion Problems Using Parametric	FUN-8: Solving an initial value problem allows us to determine an expression for the position of a particle moving in the plane.	FUN-8.B.1	9.8, pp. 698-700
and Vector-Valued Functions BC ONLY	FUN-8.B: Determine values for positions and rates of change in problems involving planar motion. BC ONLY	FUN-8.B.2	9.8, p. 701
9.7: Defining Polar Coordinates and Differentiating	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.G.1	9.4, pp. 663-669
in Polar Form BC ONLY	FUN-3.G: Calculate derivatives of functions written in polar coordinates. BC ONLY	FUN-3.G.2	9.4, pp. 667-668

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
9.8: Finding the Area of a Polar Region or the Area Bounded by a Single Polar Curve BC ONLY	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.CHA-5.D: Calculate areas of regions defined by polar curves using definite integrals. BC ONLY	CHA-5.D.1	9.5, pp. 673-674
9.9: Finding the Area of the Region Bounded by Two Polar Curves BC ONLY	 CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. CHA-5.D: Calculate areas of regions defined by polar curves using definite integrals. BC ONLY 	CHA-5.D.2	9.5, p. 676

Course: AP[®] Calculus BC Only **Unit 10:** Infinite Sequences and Series

Suggested Length: AB Not Applicable BC ~17-18 class periods AP Exam Weighting: AB Not Applicable BC 17-18%

Big Ideas: Limits (LIM)

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
10.1: Defining Convergent and Divergent Infinite	LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms.	LIM-7.A.1	8.2, pp. 545-547
Series BC ONLY	LIM-7.A: Determine whether a series converges or diverges. BC ONLY	LIM-7.A.2	8.2, pp. 545-547
10.2: Working with Geometric	LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms.	LIM-7.A.3	8.2, pp. 547-548
Series BC ONLY	LIM-7.A: Determine whether a series converges or diverges. BC ONLY	LIM-7.A.4	8.2, pp. 547-548
10.3: The <i>n</i> th- Term Test for Divergence BC ONLY	LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms.LIM-7.A: Determine whether a series converges or diverges. BC ONLY	LIM-7.A.5	8.2, pp. 549-550
10.4: Integral Test for Convergence BC ONLY	 LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms. LIM-7.A: Determine whether a series converges or diverges. BC ONLY 	LIM-7.A.6	8.3, pp. 555-556
10.5: Harmonic Series and <i>p</i> -Series BC ONLY	LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms.LIM-7.A: Determine whether a series converges or diverges. BC ONLY	LIM-7.A.7	8.3, pp. 557-558
10.6: Comparison Tests for	LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms.	LIM-7.A.8	8.4, pp. 562-563
Convergence BC ONLY	LIM-7.A: Determine whether a series converges or diverges. BC ONLY	LIM-7.A.9	8.4, pp. 564-565

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
10.7: Alternating Series Test for Convergence BC ONLY	LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms.LIM-7.A: Determine whether a series converges or diverges. BC ONLY	LIM-7.A.10	8.5, pp. 569-574
10.8: Ratio Test for Convergence BC ONLY	LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms.LIM-7.A: Determine whether a series converges or diverges. BC ONLY	LIM-7.A.11	8.6, pp. 577-579
10.9: Determining Absolute or Conditional Convergence BC ONLY	LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms.	LIM-7.A.12	8.5, pp. 572-573
	LIM-7.A: Determine whether a series converges or diverges. BC ONLY	LIM-7.A.13	8.5, pp. 572-573
		LIM-7.A.14	8.5, p. 574
10.10: Alternating Series Error Bound BC ONLY	LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms.LIM-7.B: Approximate the sum of a series. BC ONLY	LIM-7.B.1	8.5, p. 571
10.11: Finding Taylor Polynomial Approximations of Functions BC ONLY	LIM-8: Power series allow us to represent associated functions on an appropriate interval.	LIM-8.A.1	8.7, pp. 588-593
	LIM-8.A: Represent a function at a point as a Taylor polynomial. BC ONLY	LIM-8.A.2	8.7, pp. 588-590
	 LIM-8: Power series allow us to represent associated functions on an appropriate interval. LIM-8.B: Approximate function values using a Taylor polynomial. BC ONLY 	LIM-8.B.1	8.7, pp. 591
10.12: Lagrange Error Bound BC ONLY	 LIM-8: Power series allow us to represent associated functions on an appropriate interval. LIM-8.C: Determine the error bound associated with a Taylor polynomial approximation. BC ONLY 	LIM-8.C.1	8.7, pp. 592-593
		LIM-8.C.2	8.9, p. 610 AP Exam Practice Questions for Chapter 8, p. 629, Exercise 9

Торіс	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) & Page Number(s)
10.13: Radius and Interval of Convergence of Power Series BC ONLY	 LIM-8: Power series allow us to represent associated functions on an appropriate interval. LIM-8.D: Determine the radius of convergence and interval of convergence for a power series. BC ONLY 	LIM-8.D.1	8.8, p. 597
		LIM-8.D.2	8.8, pp. 598-599
		LIM-8.D.3	8.8, p. 599
		LIM-8.D.4	8.8, pp. 600-601
		LIM-8.D.5	8.10, pp. 614-615
		LIM-8.D.6	8.8, pp. 602-603
10.14: Finding Taylor or Maclaurin Series for a Function BC ONLY	 LIM-8: Power series allow us to represent associated functions on an appropriate interval. LIM-8.E: Represent a function as a Taylor series or a Maclaurin series. BC ONLY 	LIM-8.E.1	8.10, pp. 614-616
	LIM-8: Power series allow us to represent associated functions on an appropriate interval.	LIM-8.F.1	8.9, p. 607
	LIM-8.F: Interpret Taylor series and Maclaurin series. BC ONLY	LIM-8.F.2	8.10, pp. 617-622
10.15: Representing Functions as Power Series BC ONLY	 LIM-8: Power series allow us to represent associated functions on an appropriate interval. LIM-8.G: Represent a given function as a power series. BC ONLY 	LIM-8.G.1	8.9, pp. 607-611