Correlation from Calculus for A^{\ominus} to College Board AP ${ }^{\oplus}$ Calculus $A B$ and $A P^{\circ}$ Calculus BC Framework

Lesson	Topic(s)	Learning Objective(s)
Chapter P: Preparation for Calculus		
P. 1	Graphs and Models	Prerequisite topics
P. 2	Linear Models and Rates of Change	Prerequisite topics
P. 3	Functions and Their Graphs	Prerequisite topics
P. 4	Inverse Functions	Prerequisite topics
P. 5	Exponential and Logarithmic Functions	Prerequisite topics

Chapter 1: Limits and Their Properties

1.1 A Preview of Calculus
1.2 Finding Limits Graphically and Numerically
1.3 Evaluating Limits Analytically
1.4 Continuity and One-Sided Limits
1.5 Infinite Limits
1.6 Limits at Infinity
1.1
$1.2,1.3,1.4,1.9$
$1.2,1.5,1.6,1.7,1.8,1.9$
$1.3,1.5,1.10,1.11,1.12$, 1.13, 1.16
$1.9,1.10,1.14$
1.9, 1.15

CHA-1.A
LIM-1.A, LIM-1.B, LIM-1.C
LIM-1.B, LIM-1.D, LIM-1.E
LIM-1.C, LIM-1.D, LIM-2.A,
LIM-2.B, LIM-2.C, FUN-1.A
LIM-2.A, LIM-2.D
LIM-2.D

Chapter 2: Differentiation

2.1 The Derivative and the Tangent Line Problem
2.2 Basic Differentiation Rules and Rates of Change
2.3 Product and Quotient Rules and Higher-Order Derivatives
2.4 The Chain Rule
2.5 Implicit Differentiation
2.6 Derivatives of Inverse Functions
2.7 Related Rates
2.8 Newton's Method

Chapter 3: Applications of Differentiation
3.1 Extrema on an Interval
3.2 Rolle's Theorem and the Mean Value Theorem
3.3 Increasing and Decreasing Functions and the First Derivative Test
3.4 Concavity and the Second Derivative Test
3.5 A Summary of Curve Sketching
3.6 Optimization Problems
3.7 Differentials
5.2, 5.4, 5.5, 5.12
5.1
5.3
5.6, 5.7
5.8, 5.9
5.10, 5.11
4.6

FUN-1.C, FUN-4.A, FUN-4.D
FUN-1.B

FUN-4.A
FUN-4.A
FUN-4.A
FUN-4.B, FUN-4.C
CHA-3.F

Lesson	Topic(s)	Learning Objective(s)
Chapter 4: Integration		
4.1 Antiderivatives and Indefinite Integration	6.7, 6.8, 6.14, 7.1, 7.6, 7.7	FUN-6.B, FUN-6.C, FUN-7.A, FUN-7.D, FUN-7.E
4.2 Area	6.1	CHA-4.A
4.3 Riemann Sums and Definite Integrals	6.2, 6.3, 6.6, 6.8	LIM-5.A, LIM-5.B, LIM-5.C, FUN-6.A, FUN-6.C
4.4 The Fundamental Theorem of Calculus	6.1, 6.4, 6.5, 6.6, 6.7, 8.1, 8.3	CHA-4.A, CHA-4.B, CHA-4.D, FUN-5.A, FUN-6.A, FUN-6.B
4.5 The Net Change Theorem	6.1, 8.2, 8.3	CHA-4.A, CHA-4.C, CHA-4.D, CHA-4.E
4.6 Integration by Substitution	6.9	FUN-6.D
4.7 The Natural Logarithmic Function: Integration	6.10	FUN-6.D
4.8 Inverse Trigonometric Functions: Integration	6.10, 6.14	FUN-6.D
Chapter 5: Differential Equations		
5.1 Slope Fields and Euler's Method	7.1, 7.2, 7.3, 7.4, 7.5, 7.7	FUN-7.A, FUN-7.B, FUN-7.C, FUN-7.E
5.2 Growth and Decay	7.6, 7.7, 7.8	FUN-7.D, FUN-7.E, FUN-7.F, FUN-7.G
5.3 Separation of Variables	7.6, 7.7	FUN-7.D, FUN-7.E
5.4 The Logistic Equation	7.9	FUN-7.H
Chapter 6: Applications of Integration		
6.1 Area of a Region Between Two Curves	8.4, 8.5, 8.6	CHA-5.A
6.2 Volume: The Disk and Washer Methods	8.7, 8.8, 8.9, 8.10, 8.11, 8.12	CHA-5.B, CHA-5.C
6.3 Volume: The Shell Method		
6.4 Arc Length and Surfaces of Revolution	8.13	CHA-6.A
Chapter 7: Integration Techniques, L'Hôpital's Rule, and Improper Integrals		
7.1 Basic Integration Rules	6.9, 6.10, 6.14	FUN-6.D
7.2 Integration by Parts	6.11, 6.14	FUN-6.E
7.3 Trigonometric Integrals	6.14	
7.4 Trigonometric Substitution	6.14	
7.5 Partial Fractions	6.12, 6.14	FUN-6.F
7.6 Integration by Tables and Other Integration Techniques	6.14	
7.7 Indeterminate Forms and L'Hôpital's Rule	4.7	LIM-4.A
7.8 Improper Integrals	6.13	LIM-6.A

Lesson	Topic(s)	Learning Objective(s)
Chapter 8: Infinite Series		
8.1	Sequences	$10.1,10.2,10.3$
8.2	Series and Convergence	$10.4,10.5$
8.3	The Integral Test and p-Series	10.6
8.4	Comparisons of Series	$10.7,10.9,10.10$
8.5	Alternating Series	10.8
8.6	The Ratio and Root Tests	LIM-7.A.A
8.7	Taylor Polynomials and Approximations	$10.11,10.12$
8.8	Power Series	LIM-7.A
8.9	Representation of Functions	LIM-7.A LIM-7.B
	by Power Series	LIM-8.A, LIM-8.B, LIM-8.C
8.10	Taylor and Maclaurin Series	$10.13,10.14,10.15$
		LIM-8.D
Chapter 9: Parametric Equations, Polar Coordinates, and Vectors		
9.1	Conics and Calculus	
9.2	Plane Curves and Parametric Equations	
9.3	Parametric Equations and Calculus	$9.1,9.2,9.3$
9.4	Polar Coordinates and Polar Graphs	9.7
9.5	Area and Arc Length in Polar Coordinates	$9.8,9.9$
9.6	Vectors in the Plane	
9.7	Vector-Valued Functions	
9.8	Velocity and Acceleration	CHA-3.G, CHA-6.B

Correlation from College Board AP ${ }^{\ominus}$ Calculus AB and AP ${ }^{\oplus}$ Calculus BC Framework to Calculus for AP ${ }^{\circ}$

Course: AP^{\circledR} Calculus AB and BC

Unit 1: Limits and Continuity

Suggested Length: AB ~22-23 class periods $B C \sim 13-14$ class periods

AP Exam Weighting: AB 10-12\%
BC 4-7\%

Big Ideas: Change (CHA); Limits (LIM); Analysis of Functions (FUN)

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) \& Page Number(s)
1.1: Introducing Calculus: Can Change Occur at an Instant?	CHA-1: Calculus allows us to generalize knowledge about motion to diverse problems involving change. CHA-1.A: Interpret the rate of change at an instant in terms of average rates of change over intervals containing that instant.	CHA-1.A. 1	1.1, pp. 58-59
		CHA-1.A. 2	1.1, pp. 58-59
		CHA-1.A. 3	1.1, pp. 58-59
1.2: Defining Limits and Using Limit Notation	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits. LIM-1.A: Represent limits analytically using correct notation.	LIM-1.A. 1	1.2, p. 65
	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits. LIM-1.B: Interpret limits expressed in analytic notation.	LIM-1.B. 1	$\begin{aligned} & \text { 1.2, pp. 65-71 } \\ & \text { 1.3, pp. 76-83 } \end{aligned}$
1.3: Estimating Limit Values from Graphs	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits. LIM-1.C: Estimate limits of functions.	LIM-1.C. 1	1.4, pp. 89-91
		LIM-1.C. 2	1.2, p. 66
		LIM-1.C. 3	1.2, p. 68
		LIM-1.C. 4	1.2, pp. 67-68
1.4: Estimating Limit Values from Tables	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits. LIM-1.C: Estimate limits of functions.	LIM-1.C. 5	1.2, p. 66
1.5: Determining Limits Using Algebraic Properties of Limits	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits. LIM-1.D: Determine the limits of functions using limit theorems.	LIM-1.D. 1	1.4, pp. 89-91
		LIM-1.D. 2	1.3, pp. 76-78
1.6: Determining Limits Using Algebraic Manipulation	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits. LIM-1.E: Determine the limits of functions using equivalent expressions for the function or the squeeze theorem.	LIM-1.E. 1	1.3, pp. 79-83

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) \& Page Number(s)
1.7: Selecting Procedures for Determining Limits			1.3, p. 79
1.8: Determining Limits Using the Squeeze Theorem	LIM-1: Reasoning with definitions, theorems, and properties can be used to justify claims about limits. LIM-1.E: Determine the limits of functions using equivalent expressions for the function or the squeeze theorem.	LIM-1.E. 2	1.3, pp. 82-83
1.9: Connecting Multiple Representations of Limits			1.2, p. 66, Example 1 1.3, p. 83, Example 9 1.5, p. 101, Example 1 1.6, p. 110, Example 2
1.10: Exploring Types of Discontinuities	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity. LIM-2.A: Justify conclusions about continuity at a point using the definition.	LIM-2.A. 1	$\begin{aligned} & 1.4, \text { p. } 88 \\ & 1.5 \text {, pp. } 102-104 \end{aligned}$
1.11: Defining Continuity at a Point	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity. LIM-2.A: Justify conclusions about continuity at a point using the definition.	LIM-2.A. 2	1.4, pp. 87-88
1.12: Confirming Continuity over an Interval	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity. LIM-2.B: Determine intervals over which a function is continuous.	LIM-2.B. 1	1.4, pp. 87-95
		LIM-2.B. 2	1.4, p. 92
1.13: Removing Discontinuities	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity. LIM-2.C: Determine values of x or solve for parameters that make discontinuous functions continuous, if possible.	LIM-2.C. 1	1.4, p. 88
		LIM-2.C. 2	1.4, p. 88
1.14: Connecting Infinite Limits and Vertical Asymptotes	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity. LIM-2.D: Interpret the behavior of functions using limits involving infinity.	LIM-2.D. 1	1.5, pp. 100-104
		LIM-2.D. 2	1.5, pp. 100-104
1.15: Connecting Limits at Infinity and Horizontal Asymptotes	LIM-2: Reasoning with definitions, theorems, and properties can be used to justify claims about continuity. LIM-2.D: Interpret the behavior of functions using limits involving infinity.	LIM-2.D. 3	1.6, pp. 108-114
		LIM-2.D. 4	1.6, pp. 108-114
		LIM-2.D. 5	1.6, pp. 108-114
1.16: Working with the Intermediate Value Theorem (IVT)	FUN-1: Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior. FUN-1.A: Explain the behavior of a function on an interval using the Intermediate Value Theorem.	FUN-1.A. 1	1.4, pp. 94-95

Course: AP^{\circledR} Calculus AB and BC
 Unit 2: Differentiation: Definition and Fundamental Properties
 Suggested Length: AB $\sim 13-14$ class periods AP Exam Weighting: AB 10-12\% $B C \sim 9-10$ class periods BC 4-7\%

Big Ideas: Change (CHA); Limits (LIM); Analysis of Functions (FUN)

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) \& Page Number(s)
2.1: Defining Average and Instantaneous Rates of Change at a Point	CHA-2: Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals. CHA-2.A: Determine average rates of change using difference quotients.	CHA-2.A. 1	$\begin{aligned} & \text { 2.1, p. } 125 \\ & \text { 2.2, pp. 142-143 } \end{aligned}$
	CHA-2: Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals. CHA-2.B: Represent the derivative of a function as the limit of a difference quotient.	CHA-2.B. 1	$\begin{aligned} & \text { 2.1, p. } 127 \\ & \text { 2.2, pp. 142-143 } \end{aligned}$
2.2: Defining the Derivative of a Function and Using Derivative Notation	CHA-2: Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals. CHA-2.B: Represent the derivative of a function as the limit of a difference quotient.	CHA-2.B. 2	2.1, p. 127
		CHA-2.B. 3	2.1, p. 127
		CHA-2.B. 4	2.1, pp. 127-128
	CHA-2: Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals. CHA-2.C: Determine the equation of a line tangent to a curve at a given point.	CHA-2.C. 1	2.1, pp. 124-128
2.3: Estimating Derivatives of a Function at a Point	CHA-2: Derivatives allow us to determine rates of change at an instant by applying limits to knowledge about rates of change over intervals. CHA-2.D: Estimate derivatives.	CHA-2.D. 1	2.1, p. 132, Exercises 1-2 AP Exam Practice Questions for Chapter 2, p. 209, Exercise 8
		CHA-2.D. 2	2.1, p. 130
2.4: Connecting Differentiability and Continuity: Determining When Derivatives Do and Do Not Exist	FUN-2: Recognizing that a function's derivative may also be a function allows us to develop knowledge about the related behaviors of both. FUN-2.A: Explain the relationship between differentiability and continuity.	FUN-2.A. 1	2.1, pp. 129-130
		FUN-2.A. 2	2.1, pp. 129-130
2.5: Applying the Power Rule	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation. FUN-3.A: Calculate derivatives of familiar functions.	FUN-3.A. 1	2.2, pp. 136-137
2.6: Derivative Rules: Constant, Sum, Difference, and Constant Multiple	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation. FUN-3.A: Calculate derivatives of familiar functions.	FUN-3.A. 2	2.2, pp. 135, 138-139
		FUN-3.A. 3	2.2, p. 139

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) \& Page Number(s)
2.7: Derivatives of $\cos x, \sin x, e^{x}$, and $\ln x$	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation. FUN-3.A: Calculate derivatives of familiar functions.	FUN-3.A. 4	2.2, pp. 140-141 2.4, pp. 165-168
	LIM-3: Reasoning with definitions, theorems, and properties can be used to determine a limit. LIM-3.A: Interpret a limit as a definition of a derivative.	LIM-3.A. 1	2.1, p. 127
2.8: The Product Rule	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation. FUN-3.B: Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B. 1	2.3, pp. 148-149
2.9: The Quotient Rule	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation. FUN-3.B: Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B. 2	2.3, pp. 150-152
2.10: Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation. FUN-3.B: Calculate derivatives of products and quotients of differentiable functions.	FUN-3.B. 3	2.3, pp. 152-153

Course: AP^{\circledR} Calculus AB and BC
Unit 3: Differentiation: Composite, Implicit, and Inverse Functions

Suggested Length: | $A B$ | $10-11$ class periods |
| :--- | :--- |
| $B C \sim 8-9$ | class periods |\quad AP Exam Weighting: AB 9-13\%

BC $4-7 \%$

Big Ideas: Analysis of Functions (FUN)

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	 Page Number(s)
3.1: The Chain Rule	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation. FUN-3.C: Calculate derivatives of compositions of differentiable functions.	FUN-3.C.1	2.4, pp. 159-168

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	 Page Number(s)
3.4: Differentiating Inverse Trigonometric Functions	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation. FUN-3.E: Calculate derivatives of inverse and inverse trigonometric functions.	FUN-3.E.2	2.6, pp. 184-186
3.5: Selecting Procedures for Calculating Derivatives		2.4, p. 168	
3.6: Calculating Higher-Order Derivatives	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation.	FUN-3.F.1	2.3, p. 153
	FUN-3.F: Determine higher-order derivatives of a function.	FUN-3.F.2	2.3, p. 153

Course: AP^{\circledR} Calculus AB and BC
Unit 4: Contextual Applications of Differentiation

$$
\begin{array}{rrl}
\text { Suggested Length: } & \mathrm{AB} \sim 10-11 \text { class periods } & \text { AP Exam Weighting: } \begin{array}{l}
\text { AB } 10-15 \% \\
\\
\mathrm{BC} \sim 6-7 \text { class periods }
\end{array} \\
\text { BC } 6-9 \%
\end{array}
$$

Big Ideas: Change (CHA); Limits (LIM)

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) \& Page Number(s)
4.1: Interpreting the Meaning of the Derivative in Context	CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.A: Interpret the meaning of a derivative in context.	CHA-3.A. 1	2.1, p. 127
		CHA-3.A. 2	2.2, pp. 142-143
		CHA-3.A. 3	2.2, pp. 142-143
4.2: StraightLine Motion: Connecting Position, Velocity, and Acceleration	CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.B: Calculate rates of change in applied contexts.	CHA-3.B. 1	$\begin{aligned} & 2.2 \text {, pp. } 142-143 \\ & 2.3 \text {, p. } 154 \\ & 2.7 \text {, pp. } 193-194 \end{aligned}$
4.3: Rates of Change in Applied Contexts Other Than Motion	CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.C: Interpret rates of change in applied contexts.	CHA-3.C. 1	2.7, pp. 191-192
4.4: Introduction to Related Rates	CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.D: Calculate related rates in applied contexts.	CHA-3.D. 1	2.7, pp. 190-194
		CHA-3.D. 2	2.7, pp. 190-194
4.5: Solving Related Rates Problems	CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.E: Interpret related rates in applied contexts.	CHA-3.E. 1	2.7, pp. 190-194

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	 Page Number(s)
4.6: Approximating Values of a Function Using Local Linearity and Linearization	CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.F: Approximate a value on a curve using the equation of a tangent line.	CHA-3.F.1	3.7, pp. 267-271
4.7: Using L'Hospital's Rule for Determining Limits of Indeterminate Forms	LIM-4: L'Hospital's rule allows us to determine the limits of some indeterminate forms. LIM-4.A: Determine limits of functions that result in indeterminate forms.	CHA-3.F.2	3.7, pp. 267-271

Course: AP^{\circledR} Calculus AB and BC
Unit 5: Analytical Applications of Differentiation
Suggested Length: AB ~15-16 class periods AP Exam Weighting: AB 15-18\% BC $\sim 10-11$ class periods BC 8-11\%

Big Ideas: Analysis of Functions (FUN)

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	 Page Number(s)
5.1: Using the Mean Value Theorem	FUN-1: Existence theorems allow us to draw conclusions about a function's behavior on an interval without precisely locating that behavior. FUN-1.B: Justify conclusions about functions by applying the Mean Value Theorem over an interval.	FUN-1.B.1	3.2, pp. 222-223

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	 Page Number(s)
5.6: Determining Concavity of Functions over Their Domains	FUN-4: A function's derivative can be used to understand some behaviors of the function. FUN-4.A: Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.4	3.4, p. 237
		FUN-4.A.6	3.4, pp. 239-240
5.7: Using the Second Derivative Test to Find Extrema	FUN-4: A function's derivative can be used to understand some behaviors of the function. FUN-4.A: Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.7	3.4, p. 241
5.8: Sketching Graphs of	FUN-4: A function's derivative can be used to understand some behaviors of the function.	FUN-4.A.9	3.5, pp. 245-252
Functions and Their Derivatives	FUN-4.A: Justify conclusions about the behavior of a function based on the behavior of its derivatives.	FUN-4.A.10	3.5, pp. 245-252
5.9: Connecting a Function, Its First	FUN-4: A function's derivative can be used to understand some behaviors of the function.		FUn

Course: AP^{\circledR} Calculus AB and BC
Unit 6: Integration and Accumulation of Change
Suggested Length: AB $\sim 18-20$ class periods AP Exam Weighting: AB 17-20\% BC ~15-16 class periods BC 17-20\%
Big Ideas: Change (CHA); Limits (LIM); Analysis of Functions (FUN)

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) \& Page Number(s)
6.1: Exploring Accumulations of Change	CHA-4: Definite integrals allow us to solve problems involving the accumulation of change over an interval. CHA-4.A: Interpret the meaning of areas associated with the graph of a rate of change in context.	CHA-4.A. 1	$\begin{aligned} & 4.4, \text { p. } 323 \\ & 4.5 \text {, p. } 330 \end{aligned}$
		CHA-4.A. 2	4.2, pp. 292-293
		CHA-4.A. 3	4.5, p. 331
		CHA-4.A.4	4.5, p. 330
6.2: Approximating Areas with Riemann Sums	LIM-5: Definite integrals can be approximated using geometric and numerical methods. LIM-5.A: Approximate a definite integral using geometric and numerical methods.	LIM-5.A. 1	4.3, pp. 304-311
		LIM-5.A. 2	$\begin{aligned} & \text { 4.3, pp. 302-305, } \\ & 309-311 \end{aligned}$
		LIM-5.A. 3	4.3, pp. 309-310
		LIM-5.A. 4	4.3, pp. 309-310
6.3: Riemann Sums, Summation Notation, and Definite Integral Notation	LIM-5: Definite integrals can be approximated using geometric and numerical methods. LIM-5.B: Interpret the limiting case of the Riemann sum as a definite integral.	LIM-5.B. 1	4.3, pp. 304-305
		LIM-5.B.2	4.3, pp. 302-303
	LIM-5: Definite integrals can be approximated using geometric and numerical methods. LIM-5.C: Represent the limiting case of the Riemann sum as a definite integral.	LIM-5.C. 1	4.3, p. 304
		LIM-5.C. 2	4.3, p. 304
6.4: The Fundamental Theorem of Calculus and Accumulation Functions	FUN-5: The Fundamental Theorem of Calculus connects differentiation and integration. FUN-5.A: Represent accumulation functions using definite integrals.	FUN-5.A. 1	4.4, pp. 323-325
		FUN-5.A. 2	4.4, pp. 324-325
6.5: Interpreting the Behavior of Accumulation Functions Involving Area	FUN-5: The Fundamental Theorem of Calculus connects differentiation and integration. FUN-5.A: Represent accumulation functions using definite integrals.	FUN-5.A. 3	4.4, pp. 323-325
6.6: Applying Properties of Definite Integrals	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. FUN-6.A: Calculate a definite integral using areas and properties of definite integrals.	FUN-6.A. 1	4.4, pp. 320-321
		FUN-6.A. 2	4.3, pp. 307-308
		FUN-6.A. 3	4.3, p. 308

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) \& Page Number(s)
6.7: The Fundamental Theorem of Calculus and Definite Integrals	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. FUN-6.B: Evaluate definite integrals analytically using the Fundamental Theorem of Calculus.	FUN-6.B. 1	4.1, pp. 280-281
		FUN-6.B. 2	4.4, pp. 324-325
		FUN-6.B. 3	4.4, pp. 317-319
6.8: Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. FUN-6.C: Determine antiderivatives of functions and indefinite integrals, using knowledge of derivatives.	FUN-6.C. 1	4.1, pp. 280-281
		FUN-6.C. 2	4.1, pp. 282-284
		FUN-6.C. 3	4.3, p. 309
6.9: Integrating Using Substitution	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. FUN-6.D: For integrands requiring substitution or rearrangements into equivalent forms: (a) Determine indefinite integrals. (b) Evaluate definite integrals.	FUN-6.D. 1	$\begin{aligned} & 4.6 \text {, pp. } 337-342 \\ & 7.1, \text { pp. } 456-459 \end{aligned}$
		FUN-6.D. 2	4.6, pp. 340-342
6.10: Integrating Functions Using Long Division and Completing the Square	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. FUN-6.D: For integrands requiring substitution or rearrangements into equivalent forms: (a) Determine indefinite integrals. (b) Evaluate definite integrals.	FUN-6.D. 3	$\begin{aligned} & \text { 4.7, p. } 349 \\ & \text { 4.8, p. } 358 \\ & \text { 7.1, pp. } 456,459 \end{aligned}$
6.11: Integrating Using Integration by Parts BC ONLY	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. FUN-6.E: For integrands requiring integration by parts: (a) Determine indefinite integrals. BC ONLY (b) Evaluate definite integrals. BC ONLY	FUN-6.E. 1	7.2, pp. 463-468
6.12: Integrating Using Linear Partial Fractions BC ONLY	FUN-6: Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. FUN-6.F: For integrands requiring integration by linear partial fractions: (a) Determine indefinite integrals. BC ONLY (b) Evaluate definite integrals. BC ONLY	FUN-6.F. 1	7.5, pp. 491-497
6.13: Evaluating Improper Integrals BC ONLY	LIM-6: The use of limits allows us to show that the areas of unbounded regions may be finite. LIM-6.A: Evaluate an improper integral or determine that the integral diverges. BC ONLY	LIM-6.A. 1	7.8, p. 517
		LIM-6.A. 2	7.8, pp. 517-523
6.14: Selecting Techniques for Antidifferentiation			$\begin{aligned} & \text { 4.1, p. } 282 \\ & \text { 4.8, p. } 359 \\ & 7.1 \text {, p. } 459 \\ & 7.2-7.6 \text {, pp. } 463-505 \end{aligned}$

Course: AP^{\circledR} Calculus AB and BC
Unit 7: Differential Equations
Suggested Length: AB $\sim 8-9$ class periods $\mathrm{BC} \sim 9-10$ class periods

AP Exam Weighting: AB 6-12\%
BC 6-9\%

Big Ideas: Analysis of Functions (FUN)

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	 Page Number(s)		
7.1: Modeling Situations with Differential Equations	FUN-7: Solving differential equations allows us to determine functions and develop models. FUN-7.A: Interpret verbal statements of problems as differential equations involving a derivative expression.	FUN-7.A.1	4.1, p. 281 5.1, p. 370		
7.2: Verifying Solutions for Differential Equations	FUN-7: Solving differential equations allows us to determine functions and develop models. FUN-7.B: Verify solutions to differential equations.	FUN-7.B.1	5.1, pp. 370-371		
7.3: Sketching Slope Fields	FUN-7: Solving differential equations allows us to determine functions and develop models.	FUN-7.C.1	FUN-7.B.2	5.1, pp. 372-373	5.1, pp. 370-371
:---					

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	 Page Number(s)
	FUN-7: Solving differential equations allows us to determine functions and develop models. FUN-7.F: Interpret the meaning of a differential equation and its variables in context.	FUN-7.F.1	5.2, pp. 380-383
	FUN-7: Solving differential equations allows us to determine functions and develop models. FUN-7.G: Determine general and particular solutions for problems involving differential equations in context.	FUN-7.F.2	5.2, p. 380
7.9: Logistic Models with Differential Equations BC ONLY	FUN-7: Solving differential equations allows us to determine functions and develop models.	FUN-7.H.1	5.5 5.2, pp. 380-383
FUN-7.H: Interpret the meaning of the logistic growth model in			
Context. BC ONLY			

Course: AP^{\circledR} Calculus AB and BC

Unit 8: Applications of Integration
Suggested Length: AB ~19-20 class periods

> AP Exam Weighting: AB $10-15 \%$
> BC 6-9\%

Big Ideas: Change (CHA)

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	 Page Number(s)
8.1: Finding the Average Value of a Function on an Interval	CHA-4: Definite integrals allow us to solve problems involving the accumulation of change over an interval. CHA-4.B: Determine the average value of a function using definite integrals.	CHA-4.B.1	4.4, pp. 321-322

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) \& Page Number(s)
8.4: Finding the Area Between Curves Expressed as Functions of x	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. CHA-5.A: Calculate areas in the plane using the definite integral.	CHA-5.A. 1	6.1, pp. 410-415
8.5: Finding the Area Between Curves Expressed as Functions of y	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. CHA-5.A: Calculate areas in the plane using the definite integral.	CHA-5.A. 2	6.1, p. 414
8.6: Finding the Area Between Curves That Intersect at More Than Two Points	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. CHA-5.A: Calculate areas in the plane using the definite integral.	CHA-5.A. 3	6.1, pp. 413-414
8.7: Volumes with Cross Sections: Squares and Rectangles	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. CHA-5.B: Calculate volumes of solids with known cross sections using definite integrals.	CHA-5.B. 1	6.2, pp. 425-426
8.8: Volumes with Cross Sections: Triangles and Semicircles	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. CHA-5.B: Calculate volumes of solids with known cross sections using definite integrals.	CHA-5.B. 2	6.2, pp. 425-426
		CHA-5.B. 3	6.2, pp. 425-426
8.9: Volume with Disc Method: Revolving Around the x - or y-Axis	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. CHA-5.C: Calculate volumes of solids of revolution using definite integrals.	CHA-5.C. 1	6.2, pp. 420-422
8.10: Volume with Disc Method: Revolving Around Other Axes	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. CHA-5.C: Calculate volumes of solids of revolution using definite integrals.	CHA-5.C. 2	6.2, pp. 420-422
8.11: Volume with Washer Method: Revolving Around the x - or y-Axis	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. CHA-5.C: Calculate volumes of solids of revolution using definite integrals.	CHA-5.C. 3	6.2, pp. 423-425
8.12: Volume with Washer Method: Revolving Around Other Axes	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. CHA-5.C: Calculate volumes of solids of revolution using definite integrals.	CHA-5.C. 4	6.2, pp. 423-425
8.13: The Arc Length of a Smooth, Planar Curve and Distance Traveled BC ONLY	CHA-6: Definite integrals allow us to solve problems involving the accumulation of change in length over an interval. CHA-6.A: Determine the length of a curve in the plane defined by a function, using a definite integral. BC ONLY	CHA-6.A. 1	6.4, pp. 440-443

Course: AP ${ }^{\circledR}$ Calculus BC Only

Unit 9: Parametric Equations, Polar Coordinates, and Vector-Valued Functions
Suggested Length: AB Not Applicable AP Exam Weighting: AB Not Applicable $B C \sim 10-11$ class periods

BC 11-12\%
Big Ideas: Change (CHA); Analysis of Functions (FUN)

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) \& Page Number(s)
9.1: Defining and Differentiating Parametric Equations BC ONLY	CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.G: Calculate derivatives of parametric functions. BC ONLY	CHA-3.G. 1	9.3, pp. 655-658
		CHA-3.G. 2	9.3, pp. 655-658
9.2: Second Derivatives of Parametric Equations BC ONLY	CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.G: Calculate derivatives of parametric functions. BC ONLY	CHA-3.G. 3	9.3, p. 656
9.3: Finding Arc Lengths of Curves Given by Parametric Equations BC ONLY	CHA-6: Definite integrals allow us to solve problems involving the accumulation of change in length over an interval. CHA-6.B: Determine the length of a curve in the plane defined by parametric functions, using a definite integral. BC ONLY	CHA-6.B. 1	9.3, pp. 657-658
9.4: Defining and Differentiating Vector-Valued Functions BC ONLY	CHA-3: Derivatives allow us to solve real-world problems involving rates of change. CHA-3.H: Calculate derivatives of vector-valued functions. BC ONLY	CHA-3.H. 1	9.7, pp. 689-693
9.5: Integrating Vector-Valued Functions BC ONLY	FUN-8: Solving an initial value problem allows us to determine an expression for the position of a particle moving in the plane. FUN-8.A: Determine a particular solution given a rate vector and initial conditions. BC ONLY	FUN-8.A. 1	9.7, p. 694
9.6: Solving Motion Problems Using Parametric	FUN-8: Solving an initial value problem allows us to determine an expression for the position of a particle moving in the plane. FUN-8.B: Determine values for positions and rates of change in problems involving planar motion. BC ONLY	FUN-8.B. 1	9.8, pp. 698-700
Functions BC ONLY		FUN-8.B. 2	9.8, p. 701
9.7: Defining Polar Coordinates	FUN-3: Recognizing opportunities to apply derivative rules can simplify differentiation. FUN-3.G: Calculate derivatives of functions written in polar coordinates. BC ONLY	FUN-3.G. 1	9.4, pp. 663-669
in Polar Form BC ONLY		FUN-3.G. 2	9.4, pp. 667-668

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	 Page Number(s)
9.8: Finding the Area of a Polar Region or the Area Bounded by a Single Polar Curve BC ONLY	CHA-5: Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval.	CHA-5.D: Calculate areas of regions defined by polar curves using definite integrals. BC ONLY	CHA-5.D.1

Course: AP ${ }^{\circledR}$ Calculus BC Only
Unit 10: Infinite Sequences and Series
Suggested Length: AB Not Applicable BC ~17-18 class periods

AP Exam Weighting: AB Not Applicable BC 17-18\%

Big Ideas: Limits (LIM)
$\begin{array}{|l|l|l|l|}\hline \text { Topic }\end{array}$ Enduring Understanding and Learning Objective $\left.\begin{array}{l}\text { Essential } \\ \text { Knowledge }\end{array} \begin{array}{l}\text { Text Section(s) \& } \\ \text { Page Number(s) }\end{array}\right]$

Highlighting indicates topics and sections that are BC only.

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	 Page Number(s)
10.7: Alternating Series Test for Convergence BC ONLY	LIM-7: Applying limits may allow us to determine the finite sum of infinitely many terms. LIM-7.A: Determine whether a series converges or diverges. BC ONLY	LIM-7.A.10	8.5, pp. 569-574

Topic	Enduring Understanding and Learning Objective	Essential Knowledge	Text Section(s) \& Page Number(s)
10.13: Radius and Interval of Convergence of Power Series BC ONLY	LIM-8: Power series allow us to represent associated functions on an appropriate interval. LIM-8.D: Determine the radius of convergence and interval of convergence for a power series. BC ONLY	LIM-8.D. 1	8.8, p. 597
		LIM-8.D. 2	8.8, pp. 598-599
		LIM-8.D. 3	8.8, p. 599
		LIM-8.D. 4	8.8, pp. 600-601
		LIM-8.D. 5	8.10, pp. 614-615
		LIM-8.D. 6	8.8, pp. 602-603
10.14: Finding Taylor or Maclaurin Series for a Function BC ONLY	LIM-8: Power series allow us to represent associated functions on an appropriate interval. LIM-8.E: Represent a function as a Taylor series or a Maclaurin series. BC ONLY	LIM-8.E. 1	8.10, pp. 614-616
	LIM-8: Power series allow us to represent associated functions on an appropriate interval. LIM-8.F: Interpret Taylor series and Maclaurin series. BC ONLY	LIM-8.F. 1	8.9, p. 607
		LIM-8.F. 2	8.10, pp. 617-622
10.15: Representing Functions as Power Series BC ONLY	LIM-8: Power series allow us to represent associated functions on an appropriate interval. LIM-8.G: Represent a given function as a power series. BC ONLY	LIM-8.G. 1	8.9, pp. 607-611

