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Unit 1: Kinematics  
 
Suggested Length: 13 class periods 
• Big Idea 1: Interactions that produce changes in motion. 
• Big Idea 2: Forces characterize interactions between objects or systems. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 1.1:  
Kinematics: 
Motion in One 
Dimension 
 
 
 

CHA–1: There are relationships 
among the vector quantities of 
position, velocity, and 
acceleration for the motion of a 
particle along a straight line. 
  
CHA–1.A:  
a. Determine the appropriate 

expressions for velocity and 
position as a function of 
time for an object 
accelerating uniformly in 
one dimension with given 
initial conditions. 

b. Calculate unknown 
variables of motion such as 
acceleration, velocity or 
positions for an object 
undergoing uniformly 
accelerated motion in one 
dimension 

c. Calculate values such as 
average velocity or 
minimum or maximum 
velocity for an object in 
uniform acceleration. 

 

CHA-1.A.1: The kinematic relationships for an 
object accelerating uniformly in one dimension 
are: 

 
 

i. CHA-1.A.1.i: The constant velocity model 
can be derived from the above 
relationships.  
 

vx =
∆x
∆t  

 
ii. CHA-1.A.1.ii: The average velocity and 

acceleration models can also be derived 
from the above relationships. 
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2.1–2.3, pp. 
21–30 
 
2.5, pp. 32–36 
 
2.7, pp. 37–39 

CHA–1: There are relationships 
among the vector quantities of 
position, velocity, and 
acceleration for the motion of a 
particle along a straight line. 
 
CHA-1.B: 
Determine functions of position, 
velocity, and acceleration that 
are consistent with each other, 
for the motion of an object with 
a nonuniform acceleration.  

CHA-1.B.1: Differentiation and integration are 
necessary for determining functions that relate, 
position, velocity, and acceleration for an object 
with nonuniform acceleration.  
 

 
 

i. CHA-1.B.1.i: These functions may include 
trigonometric, power, or exponential 
functions of time. 
 

ii. CHA-1.B.1.ii: Or a velocity dependent 

2.9, pp. 44–45 
 
6.4, pp. 138–
143 
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acceleration function (such as a resistive 
force). 
 

CHA–1: There are relationships 
among the vector quantities of 
position, velocity, and 
acceleration for the motion of a 
particle along a straight line. 
 
CHA-1.C: 
Describe the motion of an 
object in terms of the 
consistency that exists between 
position and time, velocity and 
time, and acceleration and time. 
 

CHA-1.C.1: Position, velocity, and acceleration 
versus time for a moving object are related to 
each other and depend on an understanding of 
slope, intercepts, asymptotes, and area, or upon 
conceptual calculus concepts. 

 
i. CHA-1.C.1.i: These functions may include 

trigonometric, power, exponential functions 
(of time) or velocity dependent functions. 

 

2.2, pp. 25–26 
 
2.3, pp. 27–28 
 
2.5–2.6, pp. 
33–39 

Topic 1.2: 
Kinematics: 
Motion in Two 
Dimensions 
 

CHA-2: There are multiple 
simultaneous relationships 
among the quantities of 
position, velocity, and 
acceleration for the motion of a 
particle moving in more than 
one dimension with or without 
net forces. 
 
CHA-2.A: 
a. Calculate the components 

of a velocity, position, or 
acceleration vector in two 
dimensions. 

b. Calculate a net 
displacement of an object 
moving in two dimensions. 

c. Calculate a net change in 
velocity of an object moving 
in two dimensions. 

d. Calculate an average 
acceleration vector for an 
object moving in two 
dimensions. 

e. Calculate a velocity vector 
for an object moving 
relative to another object 
(or frame of reference) that 
moves with a uniform 
velocity. 

f. Describe the velocity vector 
for one object relative to a 
second object with respect 
to its frame of reference. 

 

CHA-2.A.1: All of the kinematic quantities are 
vector quantities and can be resolved into 
components (on a given coordinate system). 

 
i. CHA-2.A.1.i: Vector addition and 

subtraction are necessary to properly 
determine changes in quantities. 

 
ii. CHA-2.A.1.ii: The position, average velocity 

and average acceleration can be 
represented in the following vector 
notation: 

 

 

3.1–3.4, pp. 
53–63 
 
4.1, pp. 69–70 
 
4.2, pp. 71–74 
 
4.6, pp. 85–88 
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CHA-2: There are multiple 
simultaneous relationships 
among the quantities of 
position, velocity, and 
acceleration for the motion of a 
particle moving in more than 
one dimension with or without 
net forces. 
 
CHA-2.B: 
Derive an expression for the 
vector position, velocity, or 
acceleration of a particle, at 
some point in its trajectory, 
using a vector expression or 
using two simultaneous 
equations. 

CHA-2.B.1: Differentiation and integration are 
necessary for determining functions that relate 
position, velocity, and acceleration for an object 
in each dimension. 
 

 
 

i. CHA-2.B.1.i: The accelerations may be 
different in each direction and may be 
nonuniform. 

 
ii. CHA-2.B.1.ii: The resultant vector of a given 

quantity such as position, velocity, or 
acceleration is the vector sum of the 
components of each quantity. 
 

2.9, pp. 44–45 
 
4.1–4.2, pp. 
69–74 

CHA-2: There are multiple 
simultaneous relationships 
among the quantities of 
position, velocity, and 
acceleration for the motion of a 
particle moving in more than 
one dimension with or without 
net forces. 
 
CHA-2.C: 
Calculate kinematic quantities of 
an object in projectile motion, 
such as: displacement, velocity, 
speed, acceleration, and time, 
given initial conditions of 
various launch angles, including 
a horizontal launch at some 
point in its trajectory. 

CHA-2.C.1: Motion in two dimensions can be 
analyzed using the kinematic equations if the 
motion is separated into vertical and horizontal 
components. 
 
i. CHA-2.C.1.i: Projectile motion assumes 

negligible air resistance and therefore 
constant horizontal velocity and constant 
vertical acceleration (earth’s gravitational 
acceleration). 

 
ii. CHA-2.C.1.ii: These kinematic relationships 

only apply to constant (uniform) 
acceleration situations and can be applied 
in both x and y directions. 
 

 
 

4.3, pp. 74–80 

CHA-2: There are multiple 
simultaneous relationships 
among the quantities of 
position, velocity, and 
acceleration for the motion of a 
particle moving in more than 
one dimension with or without 
net forces. 
 
CHA-2.D: 
Describe the motion of an 

CHA-2.D.1: The position, velocity, and 
acceleration versus time for a moving object are 
related to each other and depend on 
understanding of slope, intercepts, asymptotes, 
and area, or upon conceptual calculus concepts. 

2.2, pp. 25–26 
 
2.3, pp. 27–28 
 
2.5-2.6, pp. 
33–39 
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object in two-dimensional 
motion in terms of the 
consistency that exists between 
position and time, velocity and 
time, and acceleration and time. 
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Unit 2: Newton’s Laws of Motion 
 
Suggested Length: 14 class periods 
• Big Idea 1: Interactions that produce changes in motion. 
• Big Idea 2: Forces characterize interactions between objects or systems. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 2.1: 
Newton’s Laws 
of Motion: 
First and 
Second Laws  
 

INT-1: A net force will change 
the translational motion of an 
object.  
 
INT-1.A: 
Describe an object (either in a 
state of equilibrium or 
acceleration) in different types 
of physical situations such as 
inclines, falling through air 
resistance, Atwood machines, or 
circular tracks). 
 

INT-1.A.1: Newton’s second law can be applied to 
an object in accelerated motion or in a state of 
equilibrium. 

5.4, pp. 99–
102 
 
5.7, pp. 109, 
112–113 
 
5.8, p. 117 
 
6.1, p. 130 

INT-1: A net force will change 
the translational motion of an 
object.  
 
INT-1.B: 
a. Explain Newton’s first law in 

qualitative terms and apply 
the law to many different 
physical situations. 

b. Calculate a force of 
unknown magnitude acting 
on an object in equilibrium 

INT-1.B.1: Newton’s first law is the special case of 
the second law. When the acceleration of an 
object is zero (i.e., velocity is constant or equal to 
zero), the object is in a state of equilibrium and 
the following statements are true: 
 

Fx∑ = 0

Fy∑ = 0  
 
i. INT-1.B.1.i: Forces can be resolved into 

components and these components can be 
separately added in their respective 
directions. 

 

5.2, pp. 97–99 
 
5.7, pp. 105–
109, 113 

INT-1: A net force will change 
the translational motion of an 
object.  
 
INT-1.C: 
a. Calculate the acceleration 

of an object moving in one 
dimension when a single 
constant force (or a net 
constant force) act on the 
object during a known 
interval of time. 

b. Calculate the average force 
acting on an object moving 

INT-1.C.1: The appropriate use of Newton’s 
second law is one of the fundamental skills in 
mechanics. 
 

 
 
i. INT-1.C.1.i: The second law is a vector 

relationship. It may be necessary to draw 
complete free-body diagrams to determine 
unknown forces acting on an object.  
  

ii. INT-1.C.1.ii: Forces acting parallel to the 
velocity vector have the capacity to change 

5.4, pp. 99–
102 
 
5.7, pp. 105–
114 



6   © 2019 Cengage Learning, Inc. May not be scanned, copied or duplicated, or posted to a publicly 
accessible website, in whole or in part. 

 

in a plane with a velocity 
vector that is changing over 
a specified time interval. 

c. Describe the trajectory of a 
moving object that 
experiences a constant 
force in a direction 
perpendicular to its initial 
velocity vector. 

d. Derive an expression for the 
net force on an object in 
translational motion. 

e. Derive a complete Newton’s 
second law statement (in 
the appropriate direction) 
for an object in various 
physical dynamic situations 
(e.g., mass on incline, mass 
in elevator, strings/pulleys, 
or Atwood machines). 

 

the speed of the object. 
 

iii. INT-1.C.1.iii: Forces acting in the 
perpendicular direction have the capacity to 
change the direction of the velocity vector. 

 

INT-1: A net force will change 
the translational motion of an 
object.  
 
INT-1.D: 
Calculate a value for an 
unknown force acting on an 
object accelerating in a dynamic 
situation (e.g., inclines, Atwood 
Machines, falling with air 
resistance, pulley systems, mass 
in elevator, etc.). 
 

INT-1.D.1: Using appropriate relationships derived 
from a Newton’s second law analysis, unknown 
forces (or accelerations) can be determined from 
the given known physical characteristics. 

5.4, pp. 99–
102 
 
5.7, pp. 105–
114 
 

INT-1: A net force will change 
the translational motion of an 
object.  
 
INT-1.E: 
a. Describe the relationship 

between frictional force 
and the normal force for 
static friction and for kinetic 
friction. 

b. Explain when to use the 
static frictional relationship 
versus the kinetic frictional 
relationship in different 
physical situations (e.g., 
object sliding on surface or 
object not slipping on 
incline). 

INT-1.E.1: The relationship for the frictional force 
acting on an object on a rough surface is: 
 

 

5.8, pp. 114–
119 
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INT-1: A net force will change 
the translational motion of an 
object.  
 
INT-1.F: 
Describe the direction of 
frictional forces (static or 
kinetic) acting on an object 
under various physical 
situations. 
 

INT-1.F.1: The direction of friction can be 
determined by the relative motion between 
surfaces in kinetic frictional cases. 
  
INT-1.F.1.i: In cases where the direction of friction 
is not obvious or is not directly evident from 
relative motion, then the net motion of the object 
and the other forces acting on the object are 
required to determine the direction of the 
frictional force 

5.8, pp. 114–
119 

INT-1: A net force will change 
the translational motion of an 
object.  
 
INT-1.G: 
a.  

a. Derive expressions that 
relate mass, forces, or 
angles of inclines for various 
slipping conditions with 
friction. 

b. Calculate the value for the 
static frictional force for an 
object in various dynamic 
situations (e.g., an object at 
rest on truck bed, an object 
at rest on incline, or an 
object pinned to a 
horizontal surface). 

 

INT-1.G.1: The maximum value of static friction 
has a precise relationship:  
 

 
 
This relationship can be used to determine values 
such as, “The maximum angle of incline at which 
the block will not slip.” 

5.8, pp. 114–
119 

INT-1: A net force will change 
the translational motion of an 
object.  
 
INT-1.H: 
a. Derive an expression for the 

motion of an object freely 
falling with a resistive drag 
force (or moving 
horizontally subject to a 
resistive horizontal force). 

b. Describe the acceleration, 
velocity, or position in 
relation to time for an 
object subject to a resistive 
force (with different initial 
conditions, i.e., falling from 
rest or projected vertically). 

 

INT-1.H.1: The standard “resistive force” in this 
course is defined as a velocity dependent force in 
the opposite direction of velocity, for example: 
 

 
or 
 

 
 

6.4, pp. 138–
142 
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INT-1: A net force will change 
the translational motion of an 
object.  
 
INT-1.I: 
Calculate the terminal velocity 
of an object moving vertically 
under the influence of a 
resistive force of a given 
relationship. 
 

INT-1.I.1: The terminal velocity is defined as the 
maximum speed achieved by an object falling 
under the influence of a given drag force. The 
terminal condition is reached when the 
magnitude of the drag force is equal to the 
magnitude of the weight of the object. 
 

6.4, pp. 140–
141 

INT-1: A net force will change 
the translational motion of an 
object.  
 
INT-1.J: 
a. Derive a differential 

equation for an object in 
motion subject to a 
specified resistive force. 

b. Derive an expression for a 
time-dependent velocity 
function for an object 
moving under the influence 
of a given resistive force 
(with given initial 
conditions). 

c. Derive expressions for the 
acceleration or position of 
an object moving under the 
influence of a given 
resistive force. 

 

INT-1.J.1: Because the resistive force is a function 
of velocity, applying Newton’s second law 
correctly will lead to a differential equation for 
velocity. This is an example of that statement: 
 

m dv
dt

= −
k
m

v
 

 
i. INT-1.J.1.i: Using the method of separation 

of variables, the velocity can be determined 
from relationships by correctly integrating 
over the proper limits of integration. 
 

ii. INT-1.J.1.ii: The acceleration or position can 
be determined using methods of calculus 
once a function for velocity is determined. 

 

6.4, pp. 138–
143 

Topic 2.2: 
Circular 
Motion 

INT-2: The motion of some 
objects is constrained so that 
forces acting on the object 
cause it to move in a circular 
path. 
 
INT-2.A: 
a. Calculate the velocity of an 

object moving in a 
horizontal circle with a 
constant speed, when 
subject to a known 
centripetal force. 

b. Calculate relationships 
among the radius of a circle, 
the speed of an object (or 
period of revolution), and 
the magnitude of 
centripetal acceleration for 

INT-2.A.1: Centripetal acceleration is defined by: 
 

ac =
v2

r  
 
or defined using angular velocity: 
 

ac = ω 2r  
 

i. INT-2.A.1.i: Uniform circular motion is 
defined as an object moving in a circle with a 
constant speed. 
 

ii. INT-2.A.1.ii: The net force acting in the radial 
direction can be determined by applying 
Newton’s second law in the radial direction. 

 

6.1, pp. 123–
133 
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an object moving in uniform 
circular motion. 

INT-2: The motion of some 
objects is constrained so that 
forces acting on the object 
cause it to move in a circular 
path. 
 
INT-2.B: 
a. Explain how a net force in 

the centripetal direction 
can be a single force, more 
than one force, or even 
components of forces that 
are acting on an object 
moving in circular motion. 

b. Describe forces that are 
exerted on objects 
undergoing horizontal 
circular motion, vertical 
circular motion, or 
horizontal circular motion 
on a banked curve. 

c. Describe forces that are 
acting on different objects 
traveling in different 
circular paths. 

 

INT-2.B.1: In order for an object to undergo 
circular motion in any context, there must be a 
force, multiple forces, or components of forces 
acting in the radial direction. These forces can be 
represented with appropriate free-body diagrams. 

6.1, pp. 128–
133 

INT-2: The motion of some 
objects is constrained so that 
forces acting on the object 
cause it to move in a circular 
path. 
 
INT-2.C: 
a. Describe the direction of 

the velocity and 
acceleration vector for an 
object moving in two 
dimensions, circular 
motion, or uniform circular 
motion. 

b. Calculate the resultant 
acceleration for an object 
that changes its speed as it 
moves in a circular path. 

 

INT-2.C.1: An object that changes directions will 
always have an acceleration component that is 
perpendicular to the velocity vector. The velocity 
vector will always be tangential to the path of the 
particle. 
 
i. INT-2.C.1.i: As an object moves in a circle 

with changing speed, the resultant 
acceleration, at any point, is the vector sum 
of the radial acceleration and tangential 
acceleration. 

 

6.1, pp. 128–
133 
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INT-2: The motion of some 
objects is constrained so that 
forces acting on the object 
cause it to move in a circular 
path. 
 
INT-2.D: 
Derive expressions relating 
centripetal force to the 
minimum speed or maximum 
speed of an object moving in a 
vertical circular path.  
 

INT-2.D.1: The centripetal force is provided only 
by the gravitational force for an object moving at 
minimum speed at the top of a vertical circle. This 
speed is called “critical speed” in certain 
textbooks. 
 
INT-2.D.1.i: The maximum speed occurs at the 
bottom of the circle and is related to all of the 
vertical forces acting on the object 

6.2, pp. 134–
135 

INT-2: The motion of some 
objects is constrained so that 
forces acting on the object 
cause it to move in a circular 
path. 
 
INT-2.E: 
Derive expressions relating the 
centripetal force to the 
maximum speed of an object or 
minimum speed of an object 
moving in a circular path on a 
banked surface with friction. 
 

INT-2.E.1: Components of the static friction force 
and the normal force can contribute to the 
centripetal force for an object traveling in a circle 
on a banked surface. 
 

6.1, pp. 131–
132 

Topic 2.3: 
Newton’s Laws 
of Motion: 
Third Law 

INT-3: There are force pairs with 
equal magnitude and opposite 
directions between any two 
interacting objects. 
 
INT-3.A: 
a. Describe the forces of 

interaction between two 
objects (Newton's third 
law).  

b. Describe pairs of forces that 
occur in a physical system 
due to Newton’s third law. 

c. Describe the forces that 
occur between two (or 
more) objects accelerating 
together (e.g., in contact or 
connected by light strings, 
springs, or cords). 

 

INT-3.A.1: The forces exerted between objects are 
equal in magnitude and opposite in direction. 
 
i. INT-3.A.1.i: Third law force pairs are always 

internal to the system of the two objects 
that are interacting.  

 
ii. INT-3.A.1.ii: Each force in the pair is always 

the same type of force. 
 

5.6, pp. 103–
105 
 
5.7, pp. 110–
114 

INT-3: There are force pairs with 
equal magnitude and opposite 
directions between any two 
interacting objects. 
 

INT-3.B.1: To analyze a complete system of 
multiple connected masses in motion, several 
applications of Newton’s second law in 
conjunction with Newton’s third law may be 
necessary. This may involve solving two or three 

5.7, pp. 110–
114 
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INT-3.B: 
Derive expressions that relate 
the acceleration of multiple 
connected masses moving in a 
system (e.g., Atwood machine) 
connected by light strings with 
tensions (and pulleys). 
 

simultaneous linear equations. 
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Unit 3: Work, Energy, and Power  
 
Suggested Length: 10 class periods 
• Big Idea 1: Interactions that produce changes in motion. 
• Big Idea 2: Forces characterize interactions between objects or systems. 
• Big Idea 3: Fields predict and describe interactions. 
• Big Idea 4: Conservation laws constrain interactions. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 3.1:  
Work-Energy 
Theorem 
 
 
 

INT-4: When a force is exerted 
on an object, and the energy of 
the object changes, then work 
was done on the object.  
 
INT-4.A: 
a. Calculate work done by a 

given force (constant or as a 
given function F(x)) on an 
object that undergoes a 
specified displacement. 
b. Describe the work done 
on an object as the result of 
the scalar product between 
force and displacement. 

b. Explain how the work done 
an object by an applied 
force acting on an object 
can be negative or zero. 

 

INT-4.A.1: The component of the displacement 
that is parallel to the applied force is used to 
calculate the work. 
 
i. INT-4.A.1.i: The work done on an object by a 

force can be calculated using  
 

 
ii. INT-4.A.1.ii: Work is a scalar value that can 

be positive, negative, or zero.  
 

iii. INT-4.A.1.iii: The definition of work can be 
applied to an object when that object can be 
modeled as a point-like object. 
 

7.2–7.4, pp. 
151–157 

INT-4: When a force is exerted 
on an object, and the energy of 
the object changes, then work 
was done on the object.  
 
INT-4.B: 
Calculate a value for work done 
on an object from a force versus 
position graph. 
 

INT-4.B.1: The area under the curve of a force 
versus position graph is equivalent to the work 
done on the object or system.  
 

7.4, pp. 156–
158 

INT-4: When a force is exerted 
on an object, and the energy of 
the object changes, then work 
was done on the object.  
 
INT-4.C: 
a. Calculate the change in 

kinetic energy due to the 
work done on an object or 

INT-4.C.1: The net work done on an (point-like) 
object is equal to the object’s change the kinetic 
energy. 
 

 
 
i. INT-4.C.1.i: This is defined as the Work-

Energy Theorem. The Work-Energy Theorem 
can be used when an object or system can 

7.5, pp. 161–
164 
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system by a single force or 
multiple forces. 

b. Calculate the net work done 
on an object that undergoes 
a specified change in speed 
or change in kinetic energy. 

c. Calculate changes in an 
object’s kinetic energy or 
changes in speed that result 
from the application of 
specified forces. 

be modeled as a point-like particle (i.e., non-
deformable and not having the capacity for 
internal energy). 

 
ii. INT-4.C.1.ii: The definition of kinetic energy 

is: 

K =
1
2

mv2

 
 

iii.    INT-4.C.1.iii: Net work done on an object is 
equivalent to the sum of the individual work 
done on an object by each of the forces 
acting on the object (including conservative 
forces). 

 
Topic 3.2: 
Forces and 
Potential 
Energy 

CON-1: Conservative forces 
internal to the system can 
change the potential energy of 
that system.  
 
CON-1.A: 
a. Compare conservative and 

dissipative forces. 
b. Describe the role of a 

conservative force or a 
dissipative force in a 
dynamic system. 

CON-1.A.1: A force can be defined as a 
conservative force if the work done on an object 
by the force depends only on the initial and final 
position of the object. 
 
i. CON-1.A.1.i: The work done by a 

conservative force will be zero if the object 
undergoes a displacement that completes a 
complete closed path. 
 

ii. CON-1.A.1.ii: Common dissipative forces 
discussed in this course are friction, resistive 
forces, or externally applied forces from 
some object external to the system. 

 

7.7, pp. 169–
171 

CON-1: Conservative forces 
internal to the system can 
change the potential energy of 
that system.  
 
CON-1.B: 
a. Explain how the general 

relationship between 
potential energy functions 
and conservative forces are 
used to determine 
relationships between the 
two physical quantities. 

b. Derive an expression that 
represents the relationship 
between a conservative 
force acting in a system on 
an object to the potential 
energy of the system using 
the methods of calculus. 

 

CON-1.B.1: A definition that relates conservative 
forces internal to the system to the potential 
energy function of the system is: 
 

 
 
i. CON-1.B.1.i: The differential version (in one 

dimension) of this relationship is: 
 

 

7.8, pp. 171–
173 
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CON-1: Conservative forces 
internal to the system can 
change the potential energy of 
that system.  
 
CON-1.C: 
Describe the force within a 
system and the potential energy 
of a system. 
 

CON-1.C.1: The general relationship between a 
conservative force and a potential energy function 
can be described qualitatively and graphically. For 
example, basic curve sketching principles can be 
applied to generate a sketch (slopes, area under 
the curve, intercepts, etc.). 

7.6, pp. 165–
169 
 
7.8, pp. 171–
173 

CON-1: Conservative forces 
internal to the system can 
change the potential energy of 
that system.  
 
CON-1.D: 
a. Derive the expression for 

the potential energy 
function of an ideal spring. 

b. Derive an expression for the 
potential energy function of 
a nonideal spring that has a 
nonlinear relationship with 
position. 

CON-1.D.1: An ideal spring acting on an object is 
an example of a conservative force within a 
system (spring-object system). The ideal spring 
relationship is modeled by the following law and 
is also called “linear spring”: 
 

 
 
i. CON-1.D.1.i: Using the general relationship 

between conservative force and potential 
energy, the potential energy for an ideal 
spring can be shown as: 
 

Us =
1
2

k ∆x( )2

 
 

ii.     CON-1.D.1.ii: Nonlinear spring relationships 
can also be explored. These nonlinear forces 
are conservative since they are internal to the 
system (of spring-object) and dependent on 
position. 
 

7.6, pp. 167–
169 
 
15.1, p. 387 

CON-1: Conservative forces 
internal to the system can 
change the potential energy of 
that system.  
 
CON-1.E: 
Calculate the potential energy of 
a system consisting of an object 
in a uniform gravitational field. 
 

CON-1.E.1: The definition of the gravitational 
potential energy of a system consisting of the 
Earth and on object of mass m near the surface of 
the Earth is: 
 

∆Ug = mg∆h  

7.6, pp. 165–
166 
 
7.8, pp. 171–
173 

CON-1: Conservative forces 
internal to the system can 
change the potential energy of 
that system.  
 
CON-1.F: 
Derive an expression for the 
gravitational potential energy of 
a system consisting of a satellite 

CON-1.F.1: Using the relationship between the 
conservative force and potential energy, it can be 
shown that the gravitational potential energy of 
the object–Earth system is: 
 

UG = −
Gm1m2

r  
 
CON-1.F.1.i: The potential energy of the earth–

13.5, pp. 345–
346 
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or large mass (e.g., an asteroid) 
and the Earth at a great distance 
from the Earth. 

mass system is defined to be zero at an infinite 
distance from the earth. 
 

Topic 3.3: 
Conservation 
of Energy 

CON-2: The energy of a system 
can transform from one form to 
another without changing the 
total amount of energy in the 
system.  
 
CON-2.A: 
a. Describe physical situations 

in which mechanical energy 
of an object in a system is 
converted to other forms of 
energy in the system. 

b. Describe physical situations 
in which the total 
mechanical energy of an 
object in a system changes 
or remains constant. 

 

CON-2.A.1: If only forces internal to the system 
are acting on an object in a physical system, then 
the total change in mechanical energy is zero. 
 
i. CON-2.A.1.i: Total mechanical energy is 

defined as the sum of potential and kinetic 
energy: 

 
E = Ug + K +Us  

 
ii. CON-2.A.1.ii: When nonconservative forces 

are acting on the system, the work they do 
changes the total energy of the system as 
follows: 

 

 
 

8.1–8.2, pp. 
182–191 
 
8.4, pp. 194–
200 

CON-2: The energy of a system 
can transform from one form to 
another without changing the 
total amount of energy in the 
system.  
 
CON-2.B: 
Describe kinetic energy, 
potential energy, and total 
energy in relation to time (or 
position) for a “conservative” 
mechanical system. 
 

CON-2.B.1: In systems in which no external work 
is done, the total energy in that system is a 
constant. This is sometimes called a “conservative 
system.” 
 
CON-2.B.1.i: Some common systems that are 
frequently analyzed in this way are systems such 
as pendulum systems, ball/rollercoaster track, 
frictionless ramps or tracks, or mass/spring 
oscillator. 
 

8.2, pp. 185–
191 

CON-2: The energy of a system 
can transform from one form to 
another without changing the 
total amount of energy in the 
system.  
 
CON-2.C: 
a. Calculate unknown 

quantities (e.g., speed or 
positions of an object) that 
are in a conservative system 
of connected objects, such 
as the masses in Atwood 
machine, masses connected 
with pulley/string 
combinations, or the 
masses in a modified 
Atwood machine. 

CON-2.C.1: The application of the conservation of 
total mechanical energy can be used in many 
physical situations. 

8.1–8.2, pp. 
182–191 
 
8.4, pp. 199–
200 
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b. Calculate unknown 
quantities, such as speed or 
positions of an object that is 
under the influence of an 
ideal spring. 

c. Calculate unknown 
quantities, such as speed or 
positions of an object that is 
moving under the influence 
of some other nonconstant 
one-dimensional force. 
 

CON-2: The energy of a system 
can transform from one form to 
another without changing the 
total amount of energy in the 
system.  
 
CON-2.D: 
Derive expressions such as 
positions, heights, angles, and 
speeds for an object in vertical 
circular motion or pendulum 
motion in an arc. 
 

CON-2.D.1: In some cases, both Newton’s second 
law and conservation of energy must be applied 
simultaneously to determine unknown physical 
characteristics in a system. One such example 
frequently explored is an object in a vertical 
circular motion in earth’s gravity. A full treatment 
of force analysis and energy analysis would be 
required to determine some of the unknown 
features of the motion, such as the speed of the 
object at certain locations in the circular path. 
 

13.6, pp. 347–
350 
 

Topic 3.4: 
Power 

CON-3: The energy of an object 
or system can be changed at 
different rates. 
 
CON-3.A: 
a. Derive an expression for the 

rate at which a force does 
work on an object. 

b. Calculate the amount of 
power required for an 
object to maintain a 
constant acceleration. 

c. Calculate the amount of 
power required for an 
object to be raised vertically 
at a constant rate. 

 

CON-3.A.1: Power is defined by the following 
expressions: 
 
i. CON-3.A.1.i:  

 

P =
dE
dt  

 
ii. CON-3.A.1.ii: 

 
P F v= ⋅

 
 

 

8.5, pp. 200–
202 
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Unit 4: Systems of Particles and Linear Momentum  
 
Suggested Length: 8 class periods 
• Big Idea 1: Interactions that produce changes in motion. 
• Big Idea 2: Forces characterize interactions between objects or systems. 
• Big Idea 4: Conservation laws constrain interactions. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 4.1:  
Center of 
Mass 
 
 
 

CHA-3: The linear motion of a 
system can be described by the 
displacement, velocity, and 
acceleration of its center of 
mass. 
 
CHA-3.A: 
a. Calculate the center of mass 

of a system of point masses 
or a system of regular 
symmetrical objects. 

b. Calculate the center of mass 
of a thin rod of nonuniform 
density using integration. 

 

CHA-3.A.1: A symmetrical, regular solid of 
uniform mass density has a center of mass at its 
geometric center. 
 
i. CHA-3.A.1.i: For a nonuniform solid that can 

be considered as a collection of regular 
masses or for a system of masses: 

 

 
 

ii. CHA-3.A.1.ii: The calculus definition: 
 

 
 

9.6, pp. 230–
234 

CHA-3: The linear motion of a 
system can be described by the 
displacement, velocity, and 
acceleration of its center of 
mass. 
 
CHA-3.B: 
Describe the motion of the 
center of the mass of a system 
for various situations. 

CHA-3.B.1: If there is no net force acting on an 
object or system, the center of mass does not 
accelerate; therefore, the velocity of the center of 
mass remains unchanged. 
 
i. CHA-3.B.1.i: A system of multiple objects 

can be represented as one single mass with 
a position represented by the center of 
mass.  
 

ii. CHA-3.B.1.ii: The linear motion of a system 
can be described by the displacement, 
velocity, and acceleration of its center of 
mass. 
 

9.7, pp. 234–
237 

CHA-3: The linear motion of a 
system can be described by the 
displacement, velocity, and 
acceleration of its center of 
mass. 
 
CHA-3.C: 
Explain the difference between 

CHA-3.C.1: The center of gravity is not precisely 
the same scientific quantity as the center of mass. 
If the object experiencing a gravitational 
interaction with a large planet is of large 
dimensions (comparable to the planet), then the 
gravitational acceleration due to the large planet 
will be a nonuniform value over the length of the 
object. This would result in the center of gravity 

12.2, pp. 312–
313 
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the terms “center of gravity” 
and “center of mass,” and 
identify physical situations when 
these terms have identical 
positions and when they have 
different positions. 
 

location being a different location than the center 
of mass. 
 

Topic 4.2: 
Impulse and 
Momentum 

INT-5: An impulse exerted on an 
object will change the linear 
momentum of the object. 
 
INT-5.A: 
a. Calculate the total 

momentum of an object or 
system of objects.  

b. Calculate relationships 
between mass, velocity, and 
linear momentum of a 
moving object. 

 

INT-5.A.1: For a single object moving with some 
velocity, momentum is defined as: 
 

 
  
INT-5.A.1.i: The total momentum of the system is 
the vector sum of the momenta of the individual 
objects. 

9.1, pp. 211–
213 

INT-5: An impulse exerted on an 
object will change the linear 
momentum of the object. 
 
INT-5.B: 
Calculate the quantities of force, 
time of collision, mass, and 
change in velocity from an 
expression relating impulse to 
change in linear momentum for 
a collision of two objects. 
 

INT-5.B.1: Impulse is defined as the average force 
acting over a time interval: 
 

= ∆
 

avgJ F t  
 

Impulse is also equivalent to the change in 
momentum of the object receiving the impulse. 
 

 
 

9.3, pp. 215–
219 

INT-5: An impulse exerted on an 
object will change the linear 
momentum of the object. 
 
INT-5.C: 
Describe relationships between 
a system of objects’ individual 
momenta and the velocity of the 
center of mass of the system of 
objects. 
 

INT-5.C.1: A collection of objects with individual 
momenta can be described as one system with 
one center of mass velocity 

9.7, pp. 234–
236 

INT-5: An impulse exerted on an 
object will change the linear 
momentum of the object. 
 
INT-5.D: 
Calculate the momentum 
change in a collision using a 
force versus time graph for a 
collision. 

INT-5.D.1: Impulse is equivalent to the area under 
a force versus time graph. 
 

9.3, p. 217 
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INT-5: An impulse exerted on an 
object will change the linear 
momentum of the object. 
 
INT-5.E: 
Calculate the change in 
momentum of an object given a 
nonlinear function, F(t), for a 
net force acting on the object. 
 

INT-5.E.1: Momentum changes can be calculated 
using the calculus relationship for impulse: 
 

 

9.3, pp. 216–
219 

Topic 4.3:  
Conservation 
of Linear 
Momentum, 
Collisions 

CON-4: In the absence of an 
external force, the total 
momentum within a system can 
transfer from one object to 
another without changing the 
total momentum in the system. 
 
CON-4.A: 
a. Calculate the velocity of 

one part of a system after 
an explosion or collision of 
the system. 

b. Calculate energy changes in 
a system that undergoes a 
collision or explosion. 

 

CON-4.A.1: Total momentum is conserved in the 
system and momentum is conserved in each 
direction in the absence of an external force. 

9.4–9.5, pp. 
219–230 

CON-4: In the absence of an 
external force, the total 
momentum within a system can 
transfer from one object to 
another without changing the 
total momentum in the system. 
 
CON-4.B: 
Calculate the changes of 
momentum and kinetic energy 
as a result of a collision between 
two objects. 
 

CON-4.B.1: In the absence of an external force, 
momentum is always conserved.  
 
i. CON-4.B.1.i: Kinetic energy is only 

conserved in elastic collisions. 
 

ii. CON-4.B.1.ii: In an inelastic collision some 
kinetic energy is transferred to internal 
energy of the system. 

9.4, pp. 219–
221 

CON-4: In the absence of an 
external force, the total 
momentum within a system can 
transfer from one object to 
another without changing the 
total momentum in the system. 
 
CON-4.C: 
Describe the quantities that are 
conserved in a collision. 
 

CON-4.C.1: Momentum is a vector quantity. 
 
i. CON-4.C.1.i: Momentum in each dimension 

is conserved in the absence of a net 
external force exerted on the object or 
system. 

 
ii. CON-4.C.1.ii: Kinetic energy is conserved 

only if the collision is totally elastic. 

9.4, p. 220 
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CON-4: In the absence of an 
external force, the total 
momentum within a system can 
transfer from one object to 
another without changing the 
total momentum in the system. 
 
CON-4.D: 
Calculate the speed of the 
center of mass of a system. 
 

CON-4.D.1: Forces internal to a system do not 
change the momentum of the center of mass. 
 

9.7, pp. 234–
237 

CON-4: In the absence of an 
external force, the total 
momentum within a system can 
transfer from one object to 
another without changing the 
total momentum in the system. 
 
CON-4.E: 
a. Calculate the changes in 

speeds, changes in 
velocities, changes in kinetic 
energy, or changes in 
momenta of objects in all 
types of collisions (elastic or 
inelastic) in one dimension, 
given the initial conditions 
of the objects. 

b. Derive expressions for the 
conservation of momentum 
for a particular collision in 
one dimension. 

 

CON-4.E.1: Conservation of momentum states 
that the momentum of a system remains constant 
when there are no external forces exerted on the 
system.  
 
i. CON-4.E.1.i: Momentum is a vector quantity. 

 
ii. CON-4.E.1.ii: An elastic collision is defined as 

a system where the total kinetic energy is 
conserved in the collision.  

 

9.4, pp. 219–
227 

CON-4: In the absence of an 
external force, the total 
momentum within a system can 
transfer from one object to 
another without changing the 
total momentum in the system. 
 
 
CON-4.F: 
a. Calculate the changes in 

speeds, changes in 
velocities, changes in kinetic 
energy, or changes in 
momenta of objects 
involved in a two- 
dimensional collision 
(including an elastic 
collision), given the initial 
conditions of the objects. 

CON-4.F.1: In the absence of a net external force 
during an interaction, linear momentum is 
conserved.  
 
i. CON-4.F.1.i: Momentum is a vector 

quantity. The momenta in each dimension 
(horizontal and vertical) are also conserved. 

 
ii. CON-4.F.1.ii: Using momentum 

components can be useful in this approach. 

9.5, pp. 227–
230 
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b. Derive expressions for the 
conservation of momentum 
for a particular two-
dimensional collision of two 
objects. 
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Unit 5: Rotation  
 
Suggested Length: 12 class periods 
• Big Idea 1: Interactions that produce changes in motion. 
• Big Idea 2: Forces characterize interactions between objects or systems. 
• Big Idea 4: Conservation laws constrain interactions. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 5.1:  
Torque and 
Rotational 
Statics 
 
 
 

INT-6: When a physical system 
involves an extended rigid body, 
there are two conditions of 
equilibrium—a translational 
condition and a rotational 
condition. 
 
INT-6.A: 
a. Calculate the magnitude 

and direction of the torque 
associated with a given 
force acting on a rigid body 
system. 

b. Calculate the torque acting 
on a rigid body due to the 
gravitational force. 

 

INT-6.A.1: The definition of torque is: 
 

r Fτ = ×
  

 
 

i. INT-6.A.1.i: Torque is a vector product (or 
cross-product) and it has a direction that 
can be determined by the vector product or 
by applying the appropriate right-hand rule. 

 
ii. INT-6.A.1.ii: The idea of the “moment-arm” 

is useful when computing torque. The 
moment arm is the perpendicular distance 
between the pivot point and the line of 
action of the point of application of the 
force. The magnitude of the torque vector is 
equivalent to the product of the moment 
arm and the force. 
 

10.4–10.5, pp. 
257–263 
 
11.1, pp. 286–
288 

INT-6: When a physical system 
involves an extended rigid body, 
there are two conditions of 
equilibrium—a translational 
condition and a rotational 
condition. 
 
INT-6.B: 
a. Describe the two conditions 

of equilibrium for an 
extended rigid body. 

b. Calculate unknown 
magnitudes and directions 
of forces acting on an 
extended rigid body that is 
in a state of translational 
and rotational equilibrium. 

 

INT-6.B.1: The two conditions of equilibrium are: 
 
i.      INT-6.B.1.i: 
 

  
 

ii.      INT-6.B.1.ii:  
 

 
  
INT-6.B.2: Both conditions must be satisfied for an 
extended rigid body to be in equilibrium. 

12.1, pp. 311–
312 
 
12.3, pp. 313–
319 
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INT-6: When a physical system 
involves an extended rigid body, 
there are two conditions of 
equilibrium—a translational 
condition and a rotational 
condition. 
 
INT-6.C: 
a. Explain the differences in 

the moments of inertia 
between different objects 
such as rings, discs, spheres, 
or other regular shapes by 
applying the general 
definition of moment of 
inertia (rotational inertia) of 
a rigid body. 

b. Calculate by what factor an 
object’s rotational inertia 
will change when a 
dimension of the object is 
changed by some factor. 

c. Calculate the moment of 
inertia of point masses that 
are located in a plane about 
an axis perpendicular to the 
plane. 

 

INT-6.C.1: The general definition of moment of 
inertia is: 
 

 

10.6, pp. 263–
267 

INT-6: When a physical system 
involves an extended rigid body, 
there are two conditions of 
equilibrium—a translational 
condition and a rotational 
condition. 
 
INT-6.D: 
a. Derive the moment of 

inertia, using calculus, of a 
thin rod of uniform density 
about an arbitrary axis 
perpendicular to the rod. 

b. Derive the moment of 
inertia, using calculus, of a 
thin rod of nonuniform 
density about an arbitrary 
axis perpendicular to the 
rod. 

c. Derive the moments of 
inertia for a thin cylindrical 
shell or disc about its axis or 
an object that can be 
considered to be made up 

INT-6.D.1: The calculus definition of moment of 
inertia is: 
 

I = r2∫ dm
 

 
INT-6.D.1.i: The differential dm must be 
determined from the linear mass density of the 
rod or object. 

10.6, pp. 263–
267 
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of coaxial shells (e.g., 
annular ring). 

 

INT-6: When a physical system 
involves an extended rigid body, 
there are two conditions of 
equilibrium—a translational 
condition and a rotational 
condition. 
 
INT-6.E: 
Derive the moments of inertia of 
an extended rigid body for 
different rotational axes 
(parallel to an axis that goes 
through the object’s center of 
mass) if the moment of inertia is 
known about an axis through 
the object’s center of mass. 
 

INT-6.E.1: The parallel axis theorem is a simple 
powerful theorem that allows the moments of 
inertia to be computed for an object through any 
axis that is parallel to an axis through its’ center of 
mass. 
 

I ' = Icm + Md 2
 

 

10.7, p. 266 

Topic 5.2: 
Rotational 
Kinematics 

CHA-4: There are relationships 
among the physical properties 
of angular velocity, angular 
position, and angular 
acceleration. 
 
CHA-4.A: 
a. Explain how the angular 

kinematic relationships for 
uniform angular 
acceleration are directly 
analogous to the 
relationships for uniformly 
linearly accelerated motion. 

b. Calculate unknown 
quantities such as angular 
positions, displacement, 
angular speeds, or angular 
acceleration of a rigid body 
in uniformly accelerated 
motion, given initial 
conditions. 

c. Calculate unknown 
quantities such as angular 
positions, displacement, 
angular velocity, or 
rotational kinetic energy of 
a rigid body rotating with a 
specified nonuniform 
angular acceleration. 

CHA-4.A.1: There are angular kinematic 
relationships for objects experiencing a uniform 
angular acceleration. These are the relationships: 
 

 
 
Other relationships can be derived from the 
above two relationships. 
 
i. CHA-4.A.1.i: The appropriate unit for 

angular position is radians. 
 

ii. CHA-4.A.1.ii: The general calculus kinematic 
linear relationships have analogous 
representations in rotational motion such 
as: 

 

 
ω =

dθ
dt  

10.1–10.3, pp. 
250–257 
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CHA-4: There are relationships 
among the physical properties 
of angular velocity, angular 
position, and angular 
acceleration. 
 
CHA-4.B: 
a. Explain the use of the 

relationships that connect 
linear translational motion 
to rotational motion, in 
appropriate physical 
situations. 

b. Calculate the translational 
kinematic quantities from 
an object’s rotational 
kinematic quantities for 
objects that are rolling 
without slipping. 

c. Calculate the (tangential) 
linear acceleration of a 
point on a rotating object 
given the object’s angular 
acceleration. 

 

CHA-4.B.1: For objects that are rolling without 
slipping on a surface, the angular motion is 
related to the linear translational motion by the 
following relationships: 
 

v = rω
a = rα
∆x = r∆θ  

10.3, pp. 254–
257 
 
10.8, p. 270 

Topic 5.3: 
Rotational 
Dynamics and 
Energy 

INT-7: A net torque acting on a 
rigid extended body will 
produce rotational motion 
about a fixed axis. 
 
INT-7.A: 
a. Describe the complete 

analogy between fixed axis 
rotation and linear 
translation for an object 
subject to a net torque. 

b. Calculate unknown 
quantities such as net 
torque, angular 
acceleration, or moment of 
inertia for a rigid body 
undergoing rotational 
acceleration. 

c. Calculate the angular 
acceleration of an extended 
rigid body, of known 
moment of inertia, about a 

INT-7.A.1: The rotational analog to Newton’s 
second law is: 
 

 
 
INT-7.A.1.i: In the appropriate cases, both laws 
(Newton’s second law and the analogous 
rotational law) can be applied to a dynamic 
system and the two laws are independent from 
each other. 

10.5, pp. 259–
263 
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fixed axis or about its center 
of mass when it is 
experiencing a specified net 
torque due to one or 
several applied forces. 

INT-7: A net torque acting on a 
rigid extended body will 
produce rotational motion 
about a fixed axis. 
 
INT-7.B: 
a. Describe the net torque 

experienced by a rigid 
extended body in situations 
such as, but not limited to, 
rolling down inclines, pulled 
along horizontal surfaces by 
external forces, a pulley 
system (with rotational 
inertia), simple pendulums, 
physical pendulums, and 
rotating bars. 

b. Derive an expression for all 
torques acting on a rigid 
body in various physical 
situations using Newton’s 
second law of rotation. 

 

INT-7.B.1: All real forces acting on an extended 
rigid body can be represented by a rigid body 
diagram. The point of application of each force 
can be indicated in the diagram. 
 
i. INT-7.B.1.i: The rigid body diagram is helpful 

in applying the rotational Newton's second 
law to a rotating body. 

 
 

10.4, pp. 257–
263 
 
15.5, pp. 402–
404 

INT-7: A net torque acting on a 
rigid extended body will 
produce rotational motion 
about a fixed axis. 
 
INT-7.C: 
Derive expressions for physical 
systems such as Atwood 
Machines, pulleys with 
rotational inertia, or strings 
connecting discs or strings 
connecting multiple pulleys that 
relate linear or translational 
motion characteristics to the 
angular motion characteristics 
of rigid bodies in the system 
that are: 
 
(a) rolling (or rotating on a 

fixed axis) without slipping. 
(b) rotating and sliding 

simultaneously. 
 

INT-7.C.1: A complete analysis of a dynamic 
system that is rolling without slipping can be 
performed by applying both of Newton’s second 
laws properly to the system.  
 
i. INT-7.C.1.i: The rotational characteristics 

may be related to the linear motion 
characteristics with the relationships listed 
in section 5.B. (i.e., ) 

 
ii. INT-7.C.1.ii: If the rigid body undergoing 

motion has a rotational component of 
motion and an independent translational 
motion (i.e., the object is slipping), then the 
rolling condition relationships do not hold.  

 
( ) 

10.9, pp. 272–
277 

 

v = rω

 

v ≠ rω
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INT-7: A net torque acting on a 
rigid extended body will 
produce rotational motion 
about a fixed axis. 
 
INT-7.D: 
a. Calculate the rotational 

kinetic energy of a rotating 
rigid body. 

b. Calculate the total kinetic 
energy of a rolling body or a 
body that has both 
translation and rotational 
motion. 

c. Calculate the amount of 
work done on a rotating 
rigid body by a specified 
force applied to the rigid 
body over a specified 
angular displacement. 

 

INT-7.D.1: The definition of rotational kinetic 
energy is: 
 

KR =
1
2

Iω 2

 
 

i. INT-7.D.1.i: Total kinetic energy of a rolling 
body or a body with both forms of motion is 
the sum of each kinetic energy term.  
  

ii. INT-7.D.1.ii: The definition of work also has 
an analogous form in rotational dynamics: 
 
W = τ dθ∫  

10.7–10.9, pp. 
267–277 

INT-7: A net torque acting on a 
rigid extended body will 
produce rotational motion 
about a fixed axis. 
 
INT-7.E:  
Derive expressions using energy 
conservation principles for 
physical systems such as rolling 
bodies on inclines, Atwood 
Machines, pendulums, physical 
pendulums, and systems with 
massive pulleys that relate 
linear or angular motion 
characteristics to initial 
conditions (such as height or 
position) or properties of rolling 
body (such as moment of inertia 
or mass). 
 

INT-7.E.1: If a rigid body is defined as “rolling,” 
this implies (in the ideal case) that the frictional 
force does no work on the rolling object. The 
consequence of this property is that in some 
special cases (such as a sphere rolling down an 
inclined surface), the conservation of mechanical 
energy can be applied to the system. 

10.7–10.9, pp. 
267–277 

Topic 5.4: 
Angular 
Momentum 
and Its 
Conservation 

CON-5: In the absence of an 
external torque, the total 
angular momentum of a system 
can transfer from one object to 
another within the system 
without changing the total 
angular momentum of the 
system. 
 
CON-5.A:  
a. Calculate the angular 

CON-5.A.1: The definition of angular momentum 
of a rotating rigid body is: 
 

 
 
i. CON-5.A.1.i:  

Angular impulse is equivalent to the change 
in angular momentum. The definition of this 
relationship is: 

 

11.2–11.3, pp. 
288–295 
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impulse acting on a rotating 
rigid body given specified 
angular properties or forces 
acting over time intervals. 

b. Calculate the angular 
momentum vector of a 
rotating rigid body in cases 
in which the vector is 
parallel to the angular 
velocity vector. 

 

τ = ∆∫
 
dt L

 
 

ii. CON-5.A.1.ii: or the differential definition: 
 

τ =


 dL
dt  

 

CON-5: In the absence of an 
external torque, the total 
angular momentum of a system 
can transfer from one object to 
another within the system 
without changing the total 
angular momentum of the 
system. 
 
CON-5.B:  
Calculate the angular 
momentum vector of a linearly 
translating particle about a 
defined stationary point of 
reference. 
 

CON-5.B.1: The angular momentum of a linearly 
translating particle can be defined about some 
arbitrary point of reference or origin. The 
definition is: 
 

= ×
  
L r p  

 
i. CON-5.B.1.i: The direction of this particle’s 

angular momentum is determined by the 
vector product (cross-product). 

 

11.2–11.3, pp. 
288–295 

CON-5: In the absence of an 
external torque, the total 
angular momentum of a system 
can transfer from one object to 
another within the system 
without changing the total 
angular momentum of the 
system. 
 
CON-5.C: 
a. Describe the conditions 

under which a rotating 
system’s angular 
momentum is conserved. 

b. Explain how a one- or two-
particle system (rotating 
object or satellite orbits) 
may have a change in 
angular velocity when other 
properties of the system 
change (such as radius or 
inertia). 

 

CON-5.C.1:  
In the absence of external torques acting on a 
rotating body or system, the total angular 
momentum of the system is a constant. 

11.4, pp. 295–
300 
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CON-5: In the absence of an 
external torque, the total 
angular momentum of a system 
can transfer from one object to 
another within the system 
without changing the total 
angular momentum of the 
system. 
 
CON-5.D:  
a. Calculate changes in 

angular velocity of a 
rotating rigid body when 
the moment of inertia of 
the body changes during 
the motion (such as a 
satellite in orbit). 

b. Calculate the increase or 
decrease in angular 
momentum of a rigid body 
when a point mass particle 
has a collision with the rigid 
body. 

c. Calculate the changes of 
angular momentum of each 
disc in a rotating system of 
two rotating discs that 
collide with each other 
inelastically about a 
common rotational axis. 

 

CON-5.D.1: The conservation of angular 
momentum can be applied to many types of 
physical situations. In all cases, it must be 
determined that there is no net external torque 
on the system.  
 
i. CON-5.D.1.i: In the case of collisions (such 

as two discs colliding with each other), the 
torques applied to each disc are “internal” if 
the system is considered to be the two 
discs. 
 

ii. CON-5.D.1.ii: In the case of a particle 
colliding with a rod or physical pendulum, 
the system is considered to be the particle 
and the rod together. 

 

10.7–10.9, pp. 
267–277 
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Unit 6: Oscillations 
 
Suggested Length: 6 class periods 
• Big Idea 1: Interactions that produce changes in motion. 
• Big Idea 2: Forces characterize interactions between objects or systems. 
• Big Idea 4: Conservation laws constrain interactions. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 6.1:  
Simple 
Harmonic 
Motion, 
Springs, and 
Pendulums 
 
 
 

INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.A: 
a. Describe the general 

behavior of a spring-mass 
system in Simple Harmonic 
Motion (SHM) in qualitative 
terms. 

b. Describe the relationship 
between the phase angle 
and amplitude in a SHM 
system. 

 

INT-8.A.1: The general relationship for SHM is 
given by the following relationship: 
 

x = xmax cos(ωt +ϕ )  
 
ϕ  is the phase angle and maxx  is the amplitude of 
the oscillation. 
 
This expression can be simplified given initial 
conditions of the system 

15.1, pp. 387–
388 
 
15.2, pp. 388–
394 

INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.B:  
a. Describe the displacement 

in relation to time for a 
mass/spring system in SHM.  

b. Identify the period, 
frequency, and amplitude 
of the SHM in a mass/spring 
system from the features of 
a plot. 

 

INT-8.B.1: The period of SHM is related to the 
angular frequency by the following relationship: 
 

π
ω

= =
2 1T

f  

15.2, pp. 388–
394 

INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.C:  
a. Describe each of the three 

kinematic characteristics of 
a spring-mass system in 
SHM in relation to time 

INT-8.C.1: Using calculus and the position in 
relation to time relationship for an object in SHM, 
all three kinematic characteristics can be 
explored. Recognizing the positions or times 
where the trigonometric functions have extrema 
or zeroes can provide more detail in qualitatively 
describing the behavior of the motion. 

15.2, pp. 388–
394 



31   © 2019 Cengage Learning, Inc. May not be scanned, copied or duplicated, or posted to a publicly 
accessible website, in whole or in part. 

 

(displacement, velocity, and 
acceleration). 

b. For a spring-mass system in 
SHM: 
o Describe the general 

features of the motion; 
and  

o Identify the places on a 
graph where these 
values are zero or have 
maximum positive 
values or maximum 
negative values. 

 
INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.D:  
Derive a differential equation to 
describe Newton's second law 
for a spring-mass system in SHM 
or for the simple pendulum. 

INT-8.D.1: Using Newton’s second law, the 
following characteristic differential equation of 
SHM can be derived: 
 

d 2x
dt 2 = −ω 2x

 
 
The physical characteristics of the spring-mass 
system (or pendulum) can be determined from 
the differential relationship. 
 

15.2, pp. 388–
394 

INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.E:  
Calculate the position, velocity, 
or acceleration of a spring-mass 
system in SHM at any point in 
time or at any known position 
from the initial conditions and 
known spring constant and 
mass. 
 

INT-8.E.1: All of the characteristics of motion in 
SHM can be determined by using the general 
relationship  
 

x = xmax cos(ωt +ϕ )  
 
and calculus relationships. 

15.2, pp. 388–
394 

INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.F: 
Derive the expression for the 
period of oscillation for various 
physical systems oscillating in 
SHM. 
 
 
 

INT-8.F.1: The period can be derived from the 
characteristic differential equation. 
The following types of SHM systems can be 
explored: 
 
i. INT-8.F.1.i: Mass oscillating on spring in 

vertical orientation. 
 

ii. INT-8.F.1.ii: Mass oscillating on spring in 
horizontal orientation. 
 

iii. INT-8.F.1.iii: Mass/spring system with 
springs in series or parallel. 

15.2, pp. 388–
394 
 
15.5, pp. 400–
404 
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iv. INT-8.F.1.iv: Simple pendulum. 

 
v. INT-8.F.1.v: Physical pendulum. 

 
vi. INT-8.F.1.vi: Torsional pendulum. 
 

INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.G:  
Calculate the mechanical energy 
of an oscillating system. Show 
that this energy is conserved in 
an ideal SHM spring-mass 
system. 

INT-8.G.1: Potential energy can be calculated 
using the spring constant and the displacement 
from equilibrium of a mass-spring system:  
 

Us =
1
2

k ∆x( )2

 
 
i. INT-8.G.1.i: Mechanical energy is always 

conserved in an ideal oscillating 
spring/mass system. 

 
ii. INT-8.G.1.ii: Maximum potential energy 

occurs at maximum displacement, where 
velocity is zero and kinetic energy is zero. 
This maximum potential energy is 
equivalent to the total mechanical energy 
of the system. 

 
iii. INT-8.G.1.iii: These energy relationships are 

true in the following three types of SHM 
systems: 
o INT-8.G.1.iii-a: Mass/spring in 

horizontal orientation. 
o INT-8.G.1.iii-b: Mass/spring in vertical 

orientation. 
o INT-8.G.1.iii-c: Simple pendulum. 

 

15.3, pp. 394–
398 
 

INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.H: 
Describe the effects of changing 
the amplitude of a spring-mass 
system. 

INT-8.H.1: Total energy of a spring-mass system is 
proportional to the square of the amplitude. 
 

 
 
i. INT-8.H.1.i: The total energy is composed of 

the two contributing mechanical energies of 
the spring-mass system. 

 
total sE K U= +  

 

15.1–15.3, pp. 
387–397 

INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.I: 

INT-8.I.1: The total mechanical energy of a system 
in SHM is conserved. The potential energy of the 
spring-mass system is: 
 

Us =
1
2

k ∆x( )2

 

15.3, pp. 394–
397 
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Describe the kinetic energy as a 
function of time (or position), 
potential energy as a function of 
time (or position), and total 
mechanical energy as a function 
of time (or position) for a 
spring/mass system in SHM, 
identifying important features of 
the oscillating system and where 
these features occur. 
 

 
and the kinetic energy of the system is: 
 

K =
1
2

mv2

 
 
The total energy in the system is defined above in 
INT-8.H.1. 

INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.J: 
Explain how the model of SHM 
can be used to determine 
characteristics of motion for 
other physical systems that can 
exhibit this behavior.  
 

INT-8.J.1: Any physical system that creates a 
linear restoring force  
 

( = − ∆
 

restF k x )  
 
will exhibit the characteristics of simple harmonic 
motion. 

15.1, pp. 387–
388 

INT-8: There are certain types of 
forces that cause objects to 
repeat their motions with a 
regular pattern. 
 
INT-8.K: 
Describe a linear relationship 
between the period of a system 
oscillating in SHM and physical 
constants of the system. 

INT-8.K.1: The period of a system oscillating in 
SHM is 
 

T = 2π m
k  

 
(or its equivalent for a pendulum or physical 
pendulum) and this can be shown to be true 
experimentally from a plot of the appropriate 
data. 
 

π= 2 lT
g  

 

15.2, p. 390 
 
15.5, p. 401 
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Unit 7: Gravitation 
 
Suggested Length: 6 class periods 
o Big Idea 1: Interactions that produce changes in motion. 
o Big Idea 2: Forces characterize interactions between objects or systems. 
o Big Idea 3: Fields predict and describe interactions. 
o Big Idea 4: Conservation laws constrain interactions. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 7.1:  
Gravitational 
Forces 
 
 
 

FLD-1: Objects of large mass will 
cause gravitational fields that 
create an interaction at a 
distance with other objects with 
mass.  
 
FLD-1.A: 
Calculate the magnitude of the 
gravitational force between two 
large spherically symmetrical 
masses. 
 

FLD-1.A.1: The magnitude of the gravitational 
force between two masses can be determined by 
using Newton’s Universal Law of Gravitation. 
 

1 2
2G

Gm mF
r

=


 

13.1, pp. 333–
335 

FLD-1: Objects of large mass will 
cause gravitational fields that 
create an interaction at a 
distance with other objects with 
mass.  
 
FLD-1.B: 
Calculate the value for “g” or 
gravitational acceleration on the 
surface of earth (or some other 
large planetary object) and at 
other points outside of the 
earth. 
 

FLD-1.B.1: Using Newton’s laws it can be shown 
that the value for gravitational acceleration at the 
surface of the earth is: 
 

g =
GM e

Re
2

 
 
and if the point of interest is located far from the 
earth’s surface, then g becomes: 
 

g =
GM e

r2
 

13.2–13.3, pp. 
335–339 

FLD-1: Objects of large mass will 
cause gravitational fields that 
create an interaction at a 
distance with other objects with 
mass.  
 
FLD-1.C: 
Describe the motion in a 
qualitative way, of an object 
under the influence of a variable 
gravitational force, such as in 
the case where an object falls 
toward the earth’s surface when 
dropped from distances much 

FLD-1.C.1: The gravitational force is proportional 
to the inverse of distance squared; therefore, the 
acceleration of an object under the influence of 
this type of force will be nonuniform. 
 

13.2–13.3, pp. 
335–339 
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larger than the earth’s radius. 
 

Topic 7.2: 
Orbits of 
Planets and 
Satellites 

CON-6: Angular momentum and 
total mechanical energy will not 
change for a satellite in an orbit.  
 
CON-6.A:  
Calculate quantitative 
properties (such as period, 
speed, radius of orbit) of a 
satellite in circular orbit around 
a planetary object. 
 

CON-6.A.1: The centripetal force acting on a 
satellite is provided by the gravitational force 
between satellite and planet.  
 
CON-6.A.1.i: The velocity of a satellite in circular 
orbit is inversely proportional to the square root 
of the radius and is independent of the satellite’s 
mass. 

13.6, pp. 347–
350 

CON-6: Angular momentum and 
total mechanical energy will not 
change for a satellite in an orbit.  
 
CON-6.B:  
Derive Kepler’s Third Law for the 
case of circular orbits. 
 

CON-6.B.1: In a circular orbit, Newton’s second 
law analysis can be applied to the satellite to 
determine the orbital velocity relationship for 
satellite of mass m about a central body of mass 
M. 
 
i. CON-6.B.1.i: With proper substitutions, this 

can be reduced to expressing the period’s 
dependence on orbital distance as Kepler’s 
Third Law shows: 
 

2
2 34T r

GM
π

=
 

 

13.4, pp. 342–
343 

CON-6: Angular momentum and 
total mechanical energy will not 
change for a satellite in an orbit.  
 
CON-6.C: Describe a linear 
relationship to verify Kepler’s 
Third Law.  
 

CON-6.C.1: Verifying Kepler’s third law with actual 
data provides experimental verification of the law. 

13.4, pp. 342–
343 

CON-6: Angular momentum and 
total mechanical energy will not 
change for a satellite in an orbit.  
 
CON-6.D: 
Calculate the gravitational 
potential energy and the kinetic 
energy of a satellite/Earth 
system in which the satellite is 
in circular orbit around the 
earth. 
 

CON-6.D.1: The gravitational potential energy of a 
satellite/Earth system (or other planetary/satellite 
system) in orbit is defined by the potential energy 
function of the system: 
 

Ug = −
Gmemsat

r  
 
i. CON-6.D.1.i: The kinetic energy of a 

satellite in circular orbit can be reduced to 
an expression that is only dependent on the 
satellite’s system and position.  

 

13.5, pp. 345–
347 
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CON-6: Angular momentum and 
total mechanical energy will not 
change for a satellite in an orbit.  
 
CON-6.E: 
Derive the relationship of total 
mechanical energy of a 
satellite/earth system as a 
function of radial position. 
 

CON-6.E.1: The total mechanical energy of a 
satellite is inversely proportional to the orbital 
distance and is always a negative value and equal 
to one half of the gravitational potential energy. 
 

13.6, pp. 347–
349 

CON-6: Angular momentum and 
total mechanical energy will not 
change for a satellite in an orbit.  
 
CON-6.F: 
a. Derive an expression for the 

escape speed of a satellite 
using energy principles  

b. Describe the motion of a 
satellite launched straight 
up (or propelled toward the 
planet) from the planet’s 
surface, using energy 
principles. 

 

CON-6.F.1: In ideal situations, the energy in a 
planet/satellite system is a constant.  
 
i. CON-6.F.1.i: The gravitational potential 

energy of planet/satellite system is defined 
to have a zero value when the satellite is at 
an infinite distance (very large planetary 
distance) away from the planet. 

 
ii. CON-6.F.1.ii: By definition, the “escape 

speed” is the minimum speed required to 
escape the gravitational field of the planet. 
This could occur at a minimum when the 
satellite reaches a nominal speed of 
approximately zero at some very large 
distance away from the planet. 

 

13.6, pp. 347–
350 

CON-6: Angular momentum and 
total mechanical energy will not 
change for a satellite in an orbit.  
 
CON-6.G:  
Calculate positions, speeds, or 
energies of a satellite launched 
straight up from the planet’s 
surface, or a satellite that is 
projected straight toward the 
planet’s surface, using energy 
principles. 
 

CON-6.G.1: In ideal nonorbiting cases, a satellite’s 
physical characteristics of motion can be 
determined using the conservation of energy. 

13.6, pp. 347–
350 

CON-6: Angular momentum and 
total mechanical energy will not 
change for a satellite in an orbit.  
 
CON-6.H:  
Describe elliptical satellite orbits 
using Kepler’s three laws of 
planetary motion. 
 

CON-6.H.1: The derivation of Kepler’s Third Law is 
only required for a satellite in a circular orbit. 
 

13.4, pp. 339–
343 
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CON-6: Angular momentum and 
total mechanical energy will not 
change for a satellite in an orbit.  
 
CON-6.I: 
a. Calculate the orbital 

distances and velocities of a 
satellite in elliptical orbit 
using the conservation of 
angular momentum. 

b. Calculate the speeds of a 
satellite in elliptical orbit at 
the two extremes of the 
elliptical orbit (perihelion 
and aphelion). 

 

CON-6.I.1: In all cases of orbiting satellites, the 
total angular momentum of the satellite is a 
constant. 
 
i. CON-6.I.1.i: The conservation of mechanical 

energy and the conservation of angular 
momentum can both be used to determine 
speeds at different positions in the elliptical 
orbit. 

 

13.4, pp. 341–
342 
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Unit 1: Electrostatics  
 
AP® Exam Weighting: 21 class periods 
• Big Idea 1: Interactions produce changes in motion. 
• Big Idea 2: Forces characterize interactions between objects or systems. 
• Big Idea 3: Fields predict and describe interactions. 
• Big Idea 4: Conservation laws constrain interactions. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 1.1:  
Electrostatics: 
Charge and 
Coulomb’s 
Law 
 
 
 

ACT-1: Objects with an electric 
charge will interact with each 
other by exerting forces on each 
other. 
 
ACT-1.A: Describe behavior of 
charges or system of charged 
objects interacting with each 
other. 
 

ACT-1.A.1: Particles and objects may contain 
electrostatic charges. The law of electrostatics 
states that like charges repel and unlike charges 
attract through electrostatic interactions. 

22.1, pp. 589–
590 

ACT-1: Objects with an electric 
charge will interact with each 
other by exerting forces on each 
other. 
 
ACT-1.B: Explain and/or 
describe the behavior of a 
neutral object in the presence of 
a charged object or a system of 
charges. 
 

ACT-1.B.1: The presence of an electric field will 
polarize a neutral object (conductor or insulator). 
This can create an “induced” charge on the 
surface of the object. 
 
ACT-1.B.1.i: As a consequence of this polarization, 
a charged object can interact with a neutral 
object, producing a net attraction between the 
charged object and the neutral object.  
 

22.2, pp. 591–
592 
 
 
22.1, p. 590 

ACT-1: Objects with an electric 
charge will interact with each 
other by exerting forces on each 
other. 
 
ACT-1.C: 
a. Calculate the net 

electrostatic force on a 
single point charge due to 
other point charges.  

b. Calculate unknown 
quantities such as the force 
acting on a specified charge 
or the distances between 
charges in a system of static 
point charges. 

 

ACT-1.C.1: Point charge is defined as a charged 
object where the object is of negligible mass and 
size and takes up virtually no space. 
 
ACT-1.C.1.i: The magnitude of electrostatic force 
between two point charges is given by Coulomb’s 
law: 
 

 
 
ACT-1.C.1.ii: Net force can be determined by 
superposition of all forces acting on a point 
charge due to the vector sum of other point 
charges. 
 

 

22.3, pp. 593–
598 
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ACT-1: Objects with an electric 
charge will interact with each 
other by exerting forces on each 
other. 
 
ACT-1.D: Determine the motion 
of a charged object of specified 
charge and mass under the 
influence of an electrostatic 
force.  
 

ACT-1.D.1: Knowing the force acting on the 
charged object and the initial conditions of the 
charged object (such as initial velocity), the 
motion of the object (characteristics such as the 
acceleration, velocity and velocity changes, and 
trajectory of the object) can be determined. 

22.3, pp. 593–
598 
 
22.6, p. 610 

Topic 1.2: 
Electrostatics: 
Electric Field 
and Electric 
Potential 

FIE-1: Objects with electric 
charge will create an electric 
field. 
 
FIE-1.A: Using the definition of 
electric field, unknown 
quantities (such as charge, 
force, field, and direction of 
field) can be calculated in an 
electrostatic system of a point 
charge or an object with a 
charge in a specified electric 
field. 
 

FIE-1.A.1: The definition of electric field is defined 
as:  

 
where q is defined as a “test charge.” 
 
FIE-1.A.1.i: A test charge is a small positively 
charged object of negligible size and mass. 
 
FIE-1.A.1.ii: The direction of an electric field is the 
direction in which a test charge would move if 
placed in the field. 

22.4, pp. 598–
602 
 
 

FIE-1: Objects with electric 
charge will create an electric 
field. 
 
FIE-1.B: Describe and calculate 
the electric field due to a single 
point charge. 
 

FIE-1.B.1: The electric field of a single point 
charge can be determined by using the definition 
of the electric field and Coulomb’s law. 

22.4, pp. 599–
600 

FIE-1: Objects with electric 
charge will create an electric 
field. 
 
FIE-1.C: Describe and calculate 
the electric field due to a dipole 
or a configuration of two or 
more static-point charges. 
 

FIE-1.C.1: The electric field due to a configuration 
of static-point charges can be determined by 
applying the definition of electric field and the 
principle of superposition using the vector nature 
of the fields. 
 

22.4, pp. 601–
603 

FIE-1: Objects with electric 
charge will create an electric 
field. 

FIE-1.D.1: Electric-field lines have properties that 
show the relative magnitude of the electric-field 
strength and the direction of the electric-field 

22.5, pp. 603–
605 
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FIE-1.D: Explain or interpret an 
electric-field diagram of a 
system of charges. 
 

vector at any position in the diagram. 

FIE-1: Objects with electric 
charge will create an electric 
field. 
 
FIE-1.E: Sketch an electric-field 
diagram of a single point charge, 
a dipole, or a collection of static-
point charges. 
 

FIE-1.E.1: Using the properties of electric-field 
diagrams, a general-field line diagram can be 
drawn for static-charged situations. 

22.5, pp. 603–
605 

FIE-1: Objects with electric 
charge will create an electric 
field. 
 
FIE-1.F: Determine the 
qualitative nature of the motion 
of a charged particle of specified 
charge and mass placed in a 
uniform electric field. 
 

FIE-1.F.1: A charged particle in a uniform electric 
field will be subjected to a constant electrostatic 
force. 

22.6, pp. 605–
607 

FIE-1: Objects with electric 
charge will create an electric 
field. 
 
FIE-1.G: Sketch the trajectory of 
a known charged particle placed 
in a known uniform electric 
field.  

FIE-1.G.1: The trajectory of a charged particle can 
be determined when placed in a known uniform 
electric field.  
 
FIE-1.G.1.i: The initial conditions of motion are 
necessary to provide a complete description of 
the trajectory. 
 
FIE-1.G.1.ii: The force acting on the particle will 
be a constant force. 
 

22.6, pp. 605–
607 

Topic 1.3:  
Electrostatics: 
Electric 
Potential Due 
to Point 
Charges and 
Uniform Fields 
 
 
 

CNV-1: The total energy of a 
system composed of a collection 
of point charges can transfer 
from one form to another 
without changing the total 
amount of energy in the system. 
 
CNV-1.A: Calculate the value of 
the electric potential in the 
vicinity of one or more point 
charges. 

CNV-1.A.1: The definition of electric potential at a 
particular location due to a single point charge is: 

 

 
CNV-1.A.1.i: The potential due to multiple point 
charges can be determined by the principle of 
superposition in scalar terms of the charges by 
using the following expression: 

 

 
CNV-1.A.1.ii: The electric potential is defined to 
be zero at an infinite distance from the point 
charge. 
 

24.3, pp. 642–
643 

V =
1

4πεo
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CNV-1: The total energy of a 
system composed of a collection 
of point charges can transfer 
from one form to another 
without changing the total 
amount of energy in the system. 
 
CNV-1.B: Mathematically 
represent the relationships 
between the electric charge, the 
difference in electric potential, 
and the work done (or 
electrostatic potential energy 
lost or gained) in moving a 
charge between two points in a 
known electric field. 
 

CNV-1.B.1: The definition for stored electrostatic 
potential energy in an electrostatic system of a 
point charge and a known electric field is: 
 

 

24.1, pp. 637–
639 

CNV-1: The total energy of a 
system composed of a collection 
of point charges can transfer 
from one form to another 
without changing the total 
amount of energy in the system. 
 
CNV-1.C: 
a. Calculate the electrostatic 

potential energy of a 
collection of two or more 
point charges held in a static 
configuration.  

b. Calculate the amount of 
work needed to assemble a 
configuration of point 
charges in some known 
static configuration. 

 

CNV-1.C.1: The electrostatic potential energy of 
two point charges near each other is defined in 
this way: 
 

 

 
CNV-1.C.1.i: The total potential energy of an 
arrangement of more than two charges is the 
scalar sum of all of the electrostatic potential 
energy interactions between each pair of charges. 

24.3, pp. 643–
645 

CNV-1: The total energy of a 
system composed of a collection 
of point charges can transfer 
from one form to another 
without changing the total 
amount of energy in the system. 
 
CNV-1.D: Calculate the potential 
difference between two points 
in a uniform electric field and 
determine which point is at the 
higher potential. 
 

CNV-1.D.1: The work done in moving a test charge 
between two points in a uniform electric field can 
be calculated.  
 
CNV-1.D.1.i: Use the definition of electric 
potential difference and the definition of a 
conservative field to determine the difference in 
electric potential in this case. 
 

24.1, pp. 637–
638 
 
24.2, pp. 639–
640 
 
24.4, pp. 645–
646 
 

CNV-1: The total energy of a 
system composed of a collection 
of point charges can transfer 

CNV-1.E.1: An electrostatic configuration or field 
is a conservative field, and the work done in an 
electric field in moving a known charge through a 

24.1, p. 637 
 
24.2, p. 641 

∆U = q∆V

UE =
1

4πεo
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from one form to another 
without changing the total 
amount of energy in the system. 
 
CNV-1.E: Calculate the work 
done or changes in kinetic 
energy (or changes in speed) of 
a charge particle when it is 
moved through some known 
potential difference. 

known electric field is equivalent to the potential 
energy lost or gained by that charge. Changes in 
kinetic energy can be determined by using the 
principle of conservation of energy. 

CNV-1: The total energy of a 
system composed of a collection 
of point charges can transfer 
from one form to another 
without changing the total 
amount of energy in the system. 
 
CNV-1.F: 
a. Describe the relative 

magnitude and direction of 
an electrostatic field given a 
diagram of equipotential 
lines.  

b. Describe characteristics of a 
set of equipotential lines 
given a diagram of an 
electric field. 

c. Describe the general 
relationship between 
electric-field lines and a set 
of equipotential lines for an 
electrostatic field. 

 

CNV-1.F.1: The characteristics and direction of an 
electric field can be determined from the 
characteristics of equipotential lines. 
 
CNV-1.F.1.i: The relative magnitude of an 
electricfield can be determined by the gradient of 
the potential lines. 
 
CNV-1.F.1.ii: The direction of the electric field is 
defined to be perpendicular to an equipotential 
line and pointing in the direction of the decreasing 
potential. 

24.2, p. 640  
 
24.6, pp. 651–
653 

CNV-1: The total energy of a 
system composed of a collection 
of point charges can transfer 
from one form to another 
without changing the total 
amount of energy in the system. 
 
CNV-1.G: 
a. Use the general relationship 
between electric field and 
electric potential to calculate 
the relationships between the 
magnitude of electric field or 
the potential difference as a 
function of position. 
 
b. Use integration techniques to 
calculate a potential difference 
between two points on a line, 

CNV-1.G.1: The general definition of potential 
difference that can be used in most cases is: 
 

  
 
or in the differential form: 
 

 

24.2, pp. 639–
641 

Ex = −
dV
dx
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given the electric field as a 
function of position on that line. 
 

Topic 1.4: 
Electrostatics: 
Gauss’s Law 
 

CNV-2: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
can be applied to physical 
systems containing electrostatic 
charge. 
 
CNV-2.A: 
a. State and apply the general 

definition of electric flux. 
b. Calculate the electric flux 

through an arbitrary area or 
through a geometric shape 
(i.e., cylinder, sphere, etc.). 

c. Calculate the flux through a 
rectangular area when the 
electric field is 
perpendicular to the 
rectangle and is a function 
of one position coordinate 
only. 

 

CNV-2.A.1: The general definition of electric flux 
is: 
 

 

 
CNV-2.A.1.i: The definition for the total flux 
through a geometric closed surface is defined by 
the “surface integral” defined as: 

 
 

 
CNV-2.A.1.ii: The sign of the flux is given by the 
dot product between the electric-field vector and 
the area vector. 
 
CNV-2.A.1.iii: The area vector is defined to be 
perpendicular to the plane of the surface and 
directed outward from a closed surface. 
 

23.2, pp. 620–
623 
 
23.3, pp. 623–
625 
 
23.4, pp. 625–
629 

CNV-2: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
can be applied to physical 
systems containing electrostatic 
charge. 
 
CNV-2.B.1: Gauss’s law can be 
defined in a qualitative way as 
the total flux through a closed 
Gaussian surface being 
proportional to the charge 
enclosed by the Gaussian 
surface. The flux is also 
independent of the size of the 
Gaussian shape. 
 

CNV-2.B: Qualitatively apply Gauss’s law to a 
system of charges or charged region to determine 
characteristics of the electric field, flux, or charge 
contained in the system. 

23.3–23.4, pp. 
623–629 

CNV-2: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 

CNV-2.C.1: Gauss’s law in integral form is: 

 

23.4, p. 625 

surface E d Aϕ = ⋅∫
 

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can be applied to physical 
systems containing electrostatic 
charge. 
 
CNV-2.C: State and use Gauss’s 
law in integral form to derive 
unknown electric fields for 
planar, spherical, or cylindrically 
symmetrical charge 
distributions. 
 

 

CNV-2: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
can be applied to physical 
systems containing electrostatic 
charge. 
 
CNV-2.D: 
a. Using appropriate 

mathematics (which may 
involve calculus), calculate 
the total charge contained 
in lines, surfaces, or 
volumes when given a 
linear-charge density, a 
surface-charge density, or a 
volume-charge density of 
the charge configuration. 

b. Use Gauss’s law to calculate 
an unknown charge density 
or total charge on surface in 
terms of the electric field 
near the surface. 

 

CNV-2.D.1: In general, if a function of known 
charge density is given, the total charge can be 
determined using calculus, such as: 
 

 

 
The above is the general case for a volume-charge 
distribution. 

23.1, pp. 616–
620 

CNV-2: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
can be applied to physical 
systems containing electrostatic 
charge. 
 
CNV-2.E: 
a. Qualitatively describe 

electric fields around 
symmetrically (spherically, 
cylindrically, or planar) 
charged distributions. 

b. Describe the general 
features of an electric field 
due to symmetrically 
shaped charged 

CNV-2.E.1: Gauss’s law can help in describing 
features of electric fields of charged systems at 
the surface, inside the surface, or at some 
distance away from the surface of charged 
objects. 

23.4, pp. 625–
629 

Qt = ρ(r)dV∫
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distributions. 
 
CNV-2: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
can be applied to physical 
systems containing electrostatic 
charge. 
 
CNV-2.F: Describe the general 
features of an unknown charge 
distribution, given other 
features of the system. 
 

CNV-2.F.1: Gauss’s law can be useful in 
determining the charge distribution that created 
an electric field, especially if the distribution is 
spherically, cylindrically, or planarly symmetric. 

23.4, pp. 625–
629 

Topic 1.5:  
Electrostatics: 
Fields and 
Potentials of 
Other Charge 
Distributions 

CNV-3: There are laws that use 
calculus and symmetry to derive 
mathematical relationships that 
can be applied to electrostatic-
charge distributions. 
 
CNV-3.A: Derive expressions for 
the electric field of specified 
charge distributions using 
integration and the principle of 
superposition. Examples of such 
charge distributions include a 
uniformly charged wire, a thin 
ring of charge (along the axis of 
the ring), and semicircular or 
part of a semicircular arc. 

CNV-3.A.1: The electric field of any charge 
distribution can be determined using the principle 
of superposition, symmetry, and the definition of 
electric field due to a differential charge . One 
step in the solution is shown to be: 
 

 

 
If this is applied appropriately and evaluated over 
the appropriate limits, the electric fields of the 
stated charge distributions can be determined as 
a function of position. 
 
The following charge distributions can be 
explored using this method: 
 
CNV-3.A.1.i: An infinitely long, uniformly charged 
wire or cylinder—determine field at distances 
along perpendicular bisector. 
 
CNV-3.A.1.ii: A thin ring of charge (along the axis 
of the ring). 
 
CNV-3.A.1.iii: A semicircular or part of a 
semicircular arc. 
 
CNV-3.A.1.iv: A field due to a finite-wire or line 
charge at a distance that is collinear with the line 
charge. 
 

23.1, pp. 616–
620 
 
22.4, pp. 599–
603 

dq
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CNV-3: There are laws that use 
calculus and symmetry to derive 
mathematical relationships that 
can be applied to electrostatic-
charge distributions. 
 
CNV-3.B: 
a. Identify and qualitatively 

describe situations in which 
the direction and 
magnitude of the electric 
field can be deduced from 
symmetry considerations 
and understanding the 
general behavior of certain 
charge distributions. 

b. Describe an electric field as 
a function of distance for 
the different types of 
symmetrical charge 
distributions. 

 

CNV-3.B.1: The general characteristics of electric 
fields can be proven from the calculus definitions 
(or Gauss’s law) and/or the principle of 
superposition. 
  
The following electric fields can be explored: 
 
CNV-3.B.1.i: Electric fields with planar symmetry, 
infinite sheets of charge, combinations of infinite 
sheets of charge, or oppositely charged plates. 
 
CNV-3.B.1.ii: Linearly charged wires or charge 
distributions. 
 
CNV-3.B.1.iii: Spherically symmetrical charge 
distributions on spheres or spherical shells of 
charge. 
 
CNV-3.B.2: Other distributions of charge that can 
be deduced using Gauss’s law or the principle of 
superposition. 

23.4, pp. 625–
629 

CNV-3: There are laws that use 
calculus and symmetry to derive 
mathematical relationships that 
can be applied to electrostatic-
charge distributions. 
 
CNV-3.C: 
a. Derive expressions for the 

electric potential of a 
charge distribution using 
integration and the 
principle of superposition. 

b. Describe electric potential 
as a function of distance for 
the different types of 
symmetrical charge 
distributions. 

c. Identify regions of higher 
and lower electric potential 
by using a qualitative (or 
quantitative) argument to 
apply to the charged region 
of space. 

 

CNV-3.C.1: The integral definition of the electric 
potential due to continuous charge distributions is 
defined as: 
 

 

 
If this is applied appropriately and evaluated over 
the appropriate limits of integration, the potential 
due to the charge distribution can be determined 
as a function of position. 
 
The following charge distributions can be 
explored using this method: 
 
CNV-3.C.1.i: A uniformly charged wire. 
 
CNV-3.C.1.ii: A thin ring of charge (along the axis 
of the ring). 
 
CNV-3.C.1.iii: A semicircular arc or part of a 
semicircular arc. 
 
CNV-3.C.1.iv: A uniformly charged disk. 
 

24.3, pp. 642–
645 
 
24.5, pp. 648–
651 

 
  

V =
1

4πεo

dq
r∫



10   © 2019 Cengage Learning, Inc. May not be scanned, copied or duplicated, or posted to a publicly 
accessible website, in whole or in part. 

 

Unit 2: Conductors, Capacitors, Dielectrics 
 
AP® Exam Weighting: 10 class periods 
• Big Idea 2: Forces characterize interactions between objects or systems. 
• Big Idea 3: Fields predict and describe interactions. 
• Big Idea 4: Conservation laws constrain interactions 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 2.1:  
Conductors, 
Capacitors, 
Dielectrics: 
Electrostatics 
with 
Conductors 
 
 
 

ACT-2: Excess charge on an 
insulated conductor will spread 
out the entire conductor until 
there is no more movement of 
the charge. 
 
ACT-2.A: 
a. Recognize that the excess 

charge on a conductor in 
electrostatic equilibrium 
resides entirely on the 
surface of a conductor. 

b. Describe the consequence 
of the law of electrostatics 
and that it is responsible for 
the other law of conductors 
(that states there is an 
absence of an electric field 
inside of a conductor). 

 

ACT-2.A.1: The mutual repulsion of all charges on 
the surface of a conductor will eventually create a 
state of electrostatic equilibrium on the 
conductor. This will result in a uniform charge 
density for uniform shapes (spheres, cylinders, 
planes, etc.) and an absence of an electric field 
inside of all conductors (uniform or non-uniform 
shapes). 
 
ACT-2.A.1.i: The electric field just outside of a 
conductor must be completely perpendicular to 
the surface and have no components tangential to 
the surface. This is also a consequence of the 
electrostatic equilibrium on the surface of a 
conductor. 

24.6, pp. 651–
655 

ACT-2: Excess charge on an 
insulated conductor will spread 
out the entire conductor until 
there is no more movement of 
the charge. 
 
ACT-2.B: 
a. Explain why a conducting 

surface must be an 
equipotential surface. 

b. Describe the consequences 
of a conductor being an 
equipotential surface. 

c. Explain how a change to a 
conductor’s charge density 
due to an external electric 
field will not change the 
electric-field value inside 
the conductor.  

 

ACT-2.B.1: An equipotential surface has the 
mathematical and physical property of having no 
electric field within the conductor (inside the 
metal and inside a cavity within the metal).  
 
ACT-2.B.1.i: The equipotential condition on a 
conductor remains, even if the conductor is 
placed in an external electric field. 

24.6, pp. 651–
655 
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ACT-2: Excess charge on an 
insulated conductor will spread 
out the entire conductor until 
there is no more movement of 
the charge. 
 
ACT-2.C: 
a. Describe the process of 

charging a conductor by 
induction. 

b. Describe the net charge 
residing on conductors 
during the process of 
inducing a charge on an 
electroscope/conductor. 

 

ACT-2.C.1: A charge can be induced on a 
conductor by bringing a conductor near an 
external electric field and then simultaneously 
attaching a grounding wire/ground to the 
conductor. 

22.2, pp. 591–
592 

ACT-2: Excess charge on an 
insulated conductor will spread 
out the entire conductor until 
there is no more movement of 
the charge. 
 
ACT-2.D: Explain how a charged 
object can attract a neutral 
conductor. 
 

ACT-2.D.1: A conductor can be completely 
polarized in the presence of an electric field. 
 
ACT-2.D.1.i: The complete polarization of the 
conductor is a consequence of the conductor 
remaining an equipotential in the presence of an 
external electric field. 

22.4, pp. 591–
592 
 
24.6, pp. 651–
655 

ACT-2: Excess charge on an 
insulated conductor will spread 
out the entire conductor until 
there is no more movement of 
the charge. 
 
ACT-2.E: Describe the concept 
of electrostatic shielding. 
 

ACT-2.E.1: Electrostatic shielding is the process of 
surrounding an area by a completely closed 
conductor to create a region free of an electric 
field. 

24.6, p. 654 

ACT-3: Excess charge on an 
insulated sphere or spherical 
shell will spread out on the 
entire surface of the sphere 
until there is no more 
movement of the charge 
because the surface is an 
equipotential. 
 
ACT-3.A: 
a. For charged conducting 

spheres or spherical shells, 
describe the electric field 
with respect to position. 

b. For charged conducting 
spheres or spherical shells, 
describe the electric 

ACT-3.A.1: The electric field has a value of zero 
within a spherical conductor, and the sketch 
should indicate this fact. 
 
ACT-3.A.1.i: The electric potential within a 
conducting sphere and on its surface is considered 
an equipotential surface. This implies that the 
potential inside of a conducting sphere is constant 
and is the same value as the potential on the 
surface of the sphere. 

24.6, pp. 651–
655 
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potential with respect to 
position. 
 

ACT-3: Excess charge on an 
insulated sphere or spherical 
shell will spread out on the 
entire surface of the sphere 
until there is no more 
movement of the charge 
because the surface is an 
equipotential. 
 
ACT-3.B: Calculate the electric 
potential on the surfaces of two 
charged conducting spheres 
when connected by a 
conducting wire. 
 

ACT-3.B.1: The net charge in a system must 
remain constant. The entire system of connected 
spheres must be at the same potential. 
 
ACT-3.B.1.i: 
Charges will redistribute on two connected 
spheres until the two conditions above are met. 

24.6, pp. 653–
654 

Topic 2.2 
Conductors, 
Capacitors, 
Dielectrics: 
Capacitors 

CNV-4: There are electrical 
devices that store and transfer 
electrostatic potential energy. 
 
CNV-4.A: 
a. Apply the general definition 

of capacitance to a 
capacitor attached to a 
charging source.  

b. Calculate unknown 
quantities such as charge, 
potential difference, or 
capacitance for physical 
system with a charged 
capacitor. 

 

CNV-4.A.1: The general definition of capacitance 
is given by the following relationship: 
 

 

 

25.1, p. 664 

CNV-4: There are electrical 
devices that store and transfer 
electrostatic potential energy. 
 
CNV-4.B: 
a. Use the relationship for 

stored electrical potential 
energy for a capacitor.  

b. Calculate quantities such as 
charge, potential 
difference, capacitance, and 
potential energy of a 
physical system with a 
charged capacitor. 

 

CNV-4.B.1: The energy stored in a capacitor is 
determined by the following relationship: 
 

 

 
(or an equivalent expression) 

24.4, pp. 673–
674 

CNV-4: There are electrical 
devices that store and transfer 
electrostatic potential energy. 

CNV-4.C.1: The conservation of charge and energy 
can be applied to a closed physical system 
containing charge, capacitors, and a source of 

25.3, pp. 668–
672 
 

C =
Q

∆V

 

UE =
1
2

C(∆V )2
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CNV-4.C: Explain how a charged 
capacitor, which has stored 
energy, may transfer that energy 
into other forms of energy. 
 

potential difference. 25.4, pp. 672–
676 

CNV-4: There are electrical 
devices that store and transfer 
electrostatic potential energy. 
 
CNV-4.D: 
a. Derive an expression for a 

parallel-plate capacitor in 
terms of the geometry of 
the capacitor and 
fundamental constants. 

b. Describe the properties of a 
parallel plate capacitor in 
terms of the electric field 
between the plates, the 
potential difference 
between the plates, the 
charge on the plates, and 
distance of separation 
between the plates. 

c. Calculate physical quantities 
such as charge, potential 
difference, electric field, 
surface area, and distance 
of separation for a physical 
system that contains a 
charged parallel-plate 
capacitor. 

d. Explain how a change in the 
geometry of a capacitor will 
affect the capacitance 
value. 

 

CNV-4.D.1: The general definition of capacitance 
can be used in conjunction with the properties of 
the electric field of two large oppositely charged 
plates to determine the general definition for the 
parallel-plate capacitor in terms of the geometry 
of that capacitor. The relationship is: 
 

 

 
where  is the surface area of a plate and  is 
the distance of separation between the plates. 
The plates in a capacitor can be considered to 
have a very large surface area compared with the 
distance of separation between the plates. This 
condition makes this an ideal capacitor with a 
constant electric field between the plates. 
 
 

25.2, pp. 665–
668 

CNV-4: There are electrical 
devices that store and transfer 
electrostatic potential energy. 
 
CNV-4.E: Apply the relationship 
between the electric field 
between the capacitor plates 
and the surface-charge density 
on the plates. 

CNV-4.E.1: The electric field of oppositely charged 
plates can be determined by applying Gauss’s law 
or by applying the principle of superposition. The 
electric field between the two plates of a parallel-
plate capacitor has the following properties: 
 
CNV-4.E.1.i: The electric field is constant in 
magnitude and is independent of the geometry of 
the capacitor.  
 
CNV-4.E.1.ii: The electric field is proportional to 
the surface-charge density of the charge on one 
plate. 
 

25.2, pp. 665–
666 

C =
εoA
d

 

A

 

d
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CNV-4: There are electrical 
devices that store and transfer 
electrostatic potential energy. 
 
CNV-4.F: Derive expressions for 
the energy stored in a parallel-
plate capacitor or the energy per 
volume of the capacitor. 
 

CNV-4.F.1: The energy of the parallel-plate 
capacitor can be expressed in terms of the 
fundamental properties of the capacitor (i.e., area, 
distance of separation), fundamental properties of 
the charged system (i.e., charge density), and 
fundamental constants. 

25.2, p. 666 

CNV-4: There are electrical 
devices that store and transfer 
electrostatic potential energy. 
 
CNV-4.G: 
a. Describe the consequences 

to the physical system of a 
charged capacitor when a 
conduction slab is inserted 
between the plates or when 
the conducting plates are 
moved closer or farther 
apart. 

b. Calculate unknown 
quantities such as charge, 
potential difference, charge 
density, electric field, and 
stored energy when a 
conducting slab is placed in 
between the plates of a 
charged capacitor or when 
the plates of a charged 
capacitor are moved closer 
or farther apart. 

 

CNV-4.G.1: The charged-capacitor system will 
have different conserved quantities depending on 
the initial conditions or conditions of the 
capacitor. If the capacitor remains attached to a 
source of a potential difference, then the charge 
in the system can change in accordance to the 
changes to the system. If the capacitor is isolated 
and unattached to a potential source, then the 
charge in the capacitor system remains constant 
and other physical quantities can change in 
response to changes in the physical system. 

25.3, pp. 668–
672 
 
25.4, pp. 672–
676 

CNV-4: There are electrical 
devices that store and transfer 
electrostatic potential energy. 
 
CNV-4.H: Derive expressions for 
a cylindrical capacitor or a 
spherical capacitor in terms of 
the geometry of the capacitor 
and fundamental constants. 
 

CNV-4.H.1: Using the definition of capacitance 
and the properties of electrostatics of charged 
cylinders or spheres, the capacitance of a 
cylindrical or spherical capacitor can also be 
determined in terms of its geometrical properties 
and fundamental constants. 

25.2, pp. 667–
668 

CNV-4: There are electrical 
devices that store and transfer 
electrostatic potential energy. 
 
CNV-4.I: Calculate physical 
quantities such as charge, 
potential difference, electric 
field, surface area, and distance 

CNV-4.I.1: The properties of capacitance still hold 
for all types of capacitors (spherical or cylindrical). 

25.2, pp. 667–
668 
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of separation for a physical 
system that contains a charged 
capacitor. 
 

Topic 2.3 
Conductors, 
Capacitors, 
Dielectrics: 
Dielectrics 

FIE-2: An insulator has different 
properties (than a conductor) 
when placed in an electric field. 
 
FIE-2.A: Describe and/or explain 
the physical properties of an 
insulating material when the 
insulator is placed in an external 
electric field. 
 

FIE-2.A.1: An insulator’s molecules will polarize to 
various degrees (slightly polarize or largely 
polarize). This effect is determined by a physical 
constant called the “dielectric constant.”  
The dielectric constant has values between 1 and 
larger numbers.  

25.2, pp. 667–
668 
 
22.5, pp. 676–
677 
 

FIE-2: An insulator has different 
properties (than a conductor) 
when placed in an electric field. 
 
FIE-2.B: Explain how a dielectric 
inserted in between the plates 
of a capacitor will affect the 
properties of the capacitor, such 
as potential difference, electric 
field between the plates, and 
charge on the capacitor. 
 

FIE-2.B.1: The dielectric will become partially 
polarized and create an electric field inside of the 
dielectric material. The net electric field between 
the plates of the capacitor is the resultant of the 
two fields—the fields between the plates and the 
induced field in the dielectric medium. This field is 
always a reduction in the field between the plate 
and therefore a reduction in the potential 
difference between the plates. 

25.5, pp. 676–
678 
 
25.7, pp. 681–
683 

FIE-2: An insulator has different 
properties (than a conductor) 
when placed in an electric field. 
 
FIE-2.C: Use the definition of the 
capacitor to describe changes in 
the capacitance value when a 
dielectric is inserted between 
the plates. 

FIE-2.C.1: The capacitance of a parallel-plate 
capacitor with a dielectric material inserted 
between the plates can be calculated as follows: 
 

 

 
where the constant κ is the dielectric constant of 
the material.  
 

25.5, pp. 676–
678 

FIE-2: An insulator has different 
properties (than a conductor) 
when placed in an electric field. 
 
FIE-2.D: 
a. Calculate changes in energy, 

charge, or potential 
difference when a dielectric 
is inserted into an isolated 
charge capacitor. 

b. Calculate changes in energy, 
charge, or potential 
difference when a dielectric 
is inserted into a capacitor 
that is attached to a source 
of potential difference. 

FIE-2.D.1: The initial condition of the capacitor 
system can determine which relationship to use 
when attempting to calculate unknown quantities 
in a capacitor system.  

25.5, pp. 676–
678 
 
25.7, pp. 681–
683 

C =
κεoA

d
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Unit 3: Electric Circuits 
 
AP® Exam Weighting: 14 class periods 
• Big Idea 2: Forces characterize interactions between objects or systems. 
• Big Idea 3: Fields predict and describe interactions. 
• Big Idea 4: Conservation laws constrain interactions. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 3.1:  
Electric 
Circuits: 
Current, 
Resistance, 
and Power 
 
 
 

FIE-3: The rate of charge flow 
through a conductor depends 
on the physical characteristics of 
the conductor. 
 
FIE-3.A: 
a. Calculate unknown 

quantities relating to the 
definition of current. 

b. Describe the relationship 
between the magnitude 
and direction of current to 
the rate of flow of positive 
or negative charge. 

 

FIE-3.A.1: The definition of current is: 
 

 

 
Conventional current is defined as the direction of 
positive charge flow. 

26.1, pp. 692–
694 

FIE-3: The rate of charge flow 
through a conductor depends 
on the physical characteristics of 
the conductor. 
 
FIE-3.B: 
a. Describe the relationship 

between current, potential 
difference, and resistance 
of resistor using Ohm’s law. 

b. Apply Ohm’s law in an 
operating circuit with a 
known resistor or 
resistances. 

 

FIE-3.B.1: Ohm’s law is defined as: 
 

 

26.2, p. 695 

FIE-3: The rate of charge flow 
through a conductor depends 
on the physical characteristics of 
the conductor. 
 
FIE-3.C: 
a. Explain how the properties 

of a conductor affect 
resistance. 

b. Compare resistances of 
conductors with different 

FIE-3.C.1: The definition of resistance in terms of 
the properties of the conductor is: 
 

  

 
where  is defined as the resistivity of the 
conductor. 

26.2, pp. 694–
699 

I =
dQ
dt

I =
∆V
R

R
A

ρ
=



 

ρ
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geometries or material. 
c. Calculate the resistance of a 

conductor of known 
resistivity and geometry. 

 
FIE-3: The rate of charge flow 
through a conductor depends 
on the physical characteristics of 
the conductor. 
 
FIE-3.D: Describe the 
relationship between the 
electric field strength through a 
conductor and the current 
density within the conductor. 
 

FIE-3.D.1: The relationship that defines current 
density (current per cross-sectional area) in a 
conductor is: 
 

 
 
Notice that current density is a vector, whereas 
current is a scalar. 

26.2, pp. 694–
695 
 
26.4, p. 700 

FIE-3: The rate of charge flow 
through a conductor depends 
on the physical characteristics of 
the conductor. 
 
FIE-3.E: Using the microscopic 
definition of current in a 
conductor, describe the 
properties of the conductor and 
the idea of “drift velocity.” 
 

FIE-3.E.1: The definition of current in a conductor 
is: 
 

 
 

where: 
 

N is number of charge carriers per unit volume, 
 is charge on electron, 
 is cross sectional area, 

 

vd  is drift velocity of electrons. 
 

26.4, p. 700 

FIE-3: The rate of charge flow 
through a conductor depends 
on the physical characteristics of 
the conductor. 
 
FIE-3.F: Derive the expression 
for resistance of a conductor of 
uniform cross-sectional area in 
terms of its dimensions and 
resistivity. 
 

FIE-3.F.1: The definition of resistance can be 
derived using the microscopic definition of 
current and the relationship between electric field 
and current density. 

26.2, pp. 694–
699 

Topic 3.2: 
Electric 
Circuits: 
Current, 
Resistance 
Power 

CNV-5: There are electrical 
devices that convert electrical 
potential energy into other 
forms of energy. 
 
CNV-5.A: 
a. Derive expressions that 

relate current, voltage, and 
resistance to the rate at 
which heat is produced in a 
resistor. 

b. Calculate different rates of 
heat production for 

CNV-5.A.1: The definition of power or the rate of 
heat loss through a resistor is: 
 

 
 
or an equivalent expression that can be simplified 
using Ohm’s law. 
 

26.6, p. 704 

= dI Nev A

 

e

 

A

P = I∆V
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different resistors in a 
circuit. 

 

CNV-5: There are electrical 
devices that convert electrical 
potential energy into other 
forms of energy. 
 
CNV-5.B: Calculate the amount 
of heat produced in a resistor 
given a known time interval and 
the circuit characteristics. 
 

CNV-5.B.1: The total amount of heat energy 
transferred from electrical potential energy to 
heat can be determined using the definition of 
power. 

26.6, pp. 704–
706 

Topic 3.3 
Electric 
Currents: 
Steady-State 
Direct-Current 
Circuits with 
Batteries and 
Resistors Only 

CNV-6: Total energy and charge 
are conserved in a circuit 
containing resistors and a 
source of energy. 
 
CNV-6.A: 
a. Identify parallel or series 

arrangement in a circuit 
containing multiple 
resistors. 

b. Describe a series or a 
parallel arrangement of 
resistors. 

 

CNV-6.A.1: Series arrangement of resistors is 
defined as resistors arranged one after the other, 
creating one possible branch for charge flow. 
 
Parallel arrangement of resistors is defined as 
resistors attached to the same to points 
(electrically), creating multiple pathways for 
charge flow. 

27.2, pp. 716–
722 

CNV-6: Total energy and charge 
are conserved in a circuit 
containing resistors and a 
source of energy. 
 
CNV-6.B: Calculate equivalent 
resistances for a network of 
resistors that can be considered 
a combination of series and 
parallel arrangement. 
 

CNV-6.B.1: The rule for equivalent resistance for 
resistors arranged in series is: 
 

 

 
The rule for equivalent resistance for resistors 
arranged in parallel is: 
 

 

 

27.2, pp. 717, 
719 

CNV-6: Total energy and charge 
are conserved in a circuit 
containing resistors and a 
source of energy. 
 
CNV-6.C: 
a. Calculate voltage, current, 

and power dissipation for 
any resistor in a circuit 
containing a network of 
known resistors with a 
single battery or energy 

CNV-6.C.1: The current in a circuit containing 
resistors arranged in series or a branch of a circuit 
containing resistors arranged in series is the same 
at every point in the circuit or branch. 
 
CNV-6.C.1.i: The potential difference is the same 
value across multiple branches of resistors or 
branches that are in parallel. 
 
CNV-6.C.1.ii: The reduction of a circuit containing 
a network of resistors in parallel and series 
arrangement is necessary to determine the 

27.2, pp. 717–
718, 721–722 

 
RS = Ri

i
∑

  

1
RP

=
1
Rii

∑
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source. 
b. Calculate relationships 

between the potential 
difference, current, 
resistance, and power 
dissipation for any part of a 
circuit, given some of the 
characteristics of the circuit 
(i.e., battery voltage or 
current in the battery, or a 
resistor or branch of 
resistors). 

 

current through the battery. 
 
CNV-6.C.1.iii: Once the current through the 
battery is known, other quantities can be 
determined more easily. 
 
CNV-6.C.1.iv: Ohm’s law can be applied for every 
resistor in the circuit and for every branch in the 
circuit. 

CNV-6: Total energy and charge 
are conserved in a circuit 
containing resistors and a 
source of energy. 
 
CNV-6.D: Describe a circuit 
diagram that will properly 
produce a given current and a 
given potential difference across 
a specified component in the 
circuit. 
 

CNV-6.D.1: Conventional circuit symbols and 
circuit-diagramming technique should be used in 
order to properly represent appropriate circuit 
characteristics. 

27.2, pp. 717–
718 

CNV-6: Total energy and charge 
are conserved in a circuit 
containing resistors and a 
source of energy. 
 
CNV-6.E: 
a. Calculate the terminal 

voltage and the internal 
resistance of a battery of 
specified EMF and known 
current through the 
battery. 

b. Calculate the power 
distribution of a circuit with 
a non-ideal battery (i.e., 
power loss due to the 
battery’s resistance versus 
the total power supplied by 
the battery). 

 

CNV-6.E.1: In a non-ideal battery, an internal 
resistance will exist within the battery. This 
resistance will add in series to the total external 
circuit resistance and reduce the operating 
current in the circuit. 

27.1, pp. 714–
715 

CNV-6: Total energy and charge 
are conserved in a circuit 
containing resistors and a 
source of energy. 
 
CNV-6.F: 
a. Calculate a single unknown 

CNV-6.F.1: Kirchhoff’s rules allow for the 
determination of currents and potential 
differences in complex multi-loop circuits that 
cannot be reduced using conventional 
(series/parallel rules) methods. 
 
CNV-6.F.1.i: According to Kirchhoff’s current rule, 

27.3, pp. 723–
726 
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current, potential 
difference, or resistance in 
a multi-loop circuit using 
Kirchhoff’s rules. 

b. Set up simultaneous 
equations to calculate at 
least two unknowns 
(currents or resistance 
values) in a multi-loop 
circuit. 

c. Explain why Kirchhoff’s 
rules are valid in terms of 
energy conservation and 
charge conservation around 
a circuit loop. 

d. Identify when conventional 
circuit-reduction methods 
can be used to analyze a 
circuit and when Kirchhoff’s 
rules must be used to 
analyze a circuit. 

 

the current into a junction or node must be equal 
to the current out of that junction or node. This is 
a consequence of charge conservation. 
 
CNV-6.F.1.ii: According to Kirchhoff’s loop rule, 
the sum of the potential differences around a 
closed loop must be equal to zero. This is a 
consequence of the conservation of energy in a 
circuit loop. 

CNV-6: Total energy and charge 
are conserved in a circuit 
containing resistors and a 
source of energy. 
 
CNV-6.G: 
a. Describe the proper use of 

an ammeter and a 
voltmeter in an 
experimental circuit and 
correctly demonstrate or 
identify these methods in a 
circuit diagram. 

b. Describe the effect on 
measurements made by 
voltmeters or ammeters 
that have non-ideal 
resistances. 

 

CNV-6.G.1: An ideal ammeter has a resistance 
that is close to zero (negligible), and an ideal 
voltmeter has a resistance that is very large 
(infinite). 
 
CNV-6.G.1.i: To properly measure current in a 
circuit branch, an ammeter must be placed in 
series within the branch. To properly measure 
potential difference across a circuit element, a 
voltmeter must be used in a parallel arrangement 
with the circuit element being measured. 
 

This 
subsection of 
the essential 
knowledge is 
not directly 
addressed in 
this edition. 

Topic 3.4: 
Capacitors in 
Circuits 

CNV-7: Total energy and charge 
are conserved in a circuit that 
includes resistors, capacitors, 
and a source of energy. 
 
CNV-7.A: 
a. Calculate the equivalent 

capacitance for capacitors 
arranged in series or 
parallel, or a combination of 
both, in steady-state 

CNV-7.A.1: The equivalent capacitance of 
capacitors arranged in series can be determined 
by the following relationship: 
 

 

 
CNV-7.A.1.i: The equivalent capacitance of 
capacitors arranged in parallel can be determined 
by the following relationship: 
 

25.3, pp. 669–
672 

1
CS

=
1
Cii

∑
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situations. 
b. Calculate the potential 

differences across specified 
capacitors for an 
arrangement of capacitors 
in series in a circuit. 

c. Calculate the stored charge 
in a system of capacitors 
and on individual capacitors 
for an arrangement of 
capacitors in series or in 
parallel. 

 

 

 
CNV-7.A.1.ii: The system of capacitors will behave 
as if the one equivalent capacitance were 
connected to the voltage source. 
 
CNV-7.A.1.iii: For capacitors arranged in parallel, 
the total charge stored in the system is equivalent 
to the sum of the individual stored charges on 
each capacitor. 
 
CNV-7.A.1.iv: For capacitors arranged in series, 
the total stored charge in the system is , and 
each individual capacitor also has a charge value 
of . 
 

CNV-7: Total energy and charge 
are conserved in a circuit that 
includes resistors, capacitors, 
and a source of energy. 
 
CNV-7.B: 
a. Calculate the potential 

difference across a 
capacitor in a circuit 
arrangement containing 
capacitors, resistors, and an 
energy source under 
steady-state conditions. 

b. Calculate the stored charge 
on a capacitor in a circuit 
arrangement containing 
capacitors, resistors, and an 
energy source under 
steady-state conditions. 

 

CNV-7.B.1: When a circuit containing resistors and 
capacitors reaches a steady-state condition, the 
potential difference across the capacitor can be 
determined using Kirchhoff’s rules. 

27.4, pp. 726–
731 

CNV-7: Total energy and charge 
are conserved in a circuit that 
includes resistors, capacitors, 
and a source of energy. 
 
CNV-7.C: In transient circuit 
conditions (i.e., RC circuits), 
calculate the time constant of a 
circuit containing resistors and 
capacitors arranged in series. 
 

CNV-7.C.1: Under transient conditions for t = 0 to 
t = steady-state conditions, the time constant in 
an RC circuit is equal to the product of equivalent 
resistance and the equivalent capacitance. 

27.4, p. 728 

CNV-7: Total energy and charge 
are conserved in a circuit that 
includes resistors, capacitors, 
and a source of energy. 

CNV-7.D.1: The changes in the electrical 
characteristics of a capacitor or resistor in an RC 
circuit can be described by fundamental 
differential equations that can be integrated over 

27.4, pp. 726–
731 

 
CP = Ci

i
∑

 

QT

 

QT
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CNV-7.D: 
a. Derive expressions using 

calculus to describe the 
time dependence of the 
stored charge or potential 
difference across the 
capacitor, or the current or 
potential difference across 
the resistor in an RC circuit 
when charging or 
discharging a capacitor. 

b. Recognize the model of 
charging or discharging a 
capacitor in an RC circuit, 
and apply the model to a 
new RC circuit. 

 

the transient time interval. 
 
CNV-7.D.1.i: The general model for the charging 
or discharging of a capacitor in an RC circuit 

contains a factor of . 

CNV-7: Total energy and charge 
are conserved in a circuit that 
includes resistors, capacitors, 
and a source of energy. 
 
CNV-7.E: 
a. Describe stored charge or 

potential difference across 
a capacitor or current, or 
potential difference of a 
resistor in a transient RC 
circuit. 

b. Describe the behavior of 
the voltage or current 
behavior over time for a 
circuit that contains 
resistors and capacitors in a 
multi-loop arrangement. 
 

CNV-7.E.1: The time constant ( ) is a 
significant feature on the sketches for transient 
behavior in an RC circuit. 
 
CNV-7.E.1.i: These particular sketches will always 
have the exponential decay factor and will either 
have an asymptote of zero or an asymptote that 
signifies some physical final state of the system 
(i.e., final stored charge, etc.). 
 
CNV-7.E.1.ii: The initial conditions of the circuit 
will be represented on the sketch by the vertical 
intercept of the graph (i.e., initial current, etc.).  
 
CNV-7.E.1.iii: The capacitor in a circuit behaves as 
a “bare wire” with zero resistance at a time 
immediately after t = 0 seconds. 
 
CNV-7.E.1.iv: The capacitor in a circuit behaves as 
an “open circuit” or having an infinite resistance 
in a condition of time much greater than the time 
constant of the circuit. 
 

27.4, pp. 726–
731 

CNV-7: Total energy and charge 
are conserved in a circuit that 
includes resistors, capacitors, 
and a source of energy. 
 
CNV-7.F: Calculate expressions 
that determine electrical 
potential energy stored in a 
capacitor as a function of time in 
a transient RC circuit. 
 

CNV-7.F.1: The electrical potential energy stored 
in a capacitor is defined by the following 
expression: 
 

 

 
This term will vary in time in accordance with the 
time dependence of the potential difference. 

27.4, pp. 726–
731 

 e
−

t
RC

 

τ = RC
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CNV-7: Total energy and charge 
are conserved in a circuit that 
includes resistors, capacitors, 
and a source of energy. 
 
CNV-7.G: 
a. Describe the energy 

transfer in charging or 
discharging a capacitor in 
an RC circuit. 

b. Calculate expressions that 
account for the energy 
transfer in charging or 
discharging a capacitor. 

 

CNV-7.G.1: The total energy provided by the 
energy source (battery) that is transferred into an 
RC circuit during the charging process is split 
between the capacitor and the resistor. 

27.4, pp. 726–
731 
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Unit 4: Magnetic Fields 
 
AP® Exam Weighting: 14 class periods 
• Big Idea 1: Interactions produce changes in motion. 
• Big Idea 2: Forces characterize interactions between objects or systems. 
• Big Idea 3: Fields predict and describe interactions. 
• Big Idea 4: Conservation laws constrain interactions. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 4.1:  
Magnetic 
Fields: Forces 
on Moving 
Charges in 
Magnetic 
Fields 
 
 
 
 

CHG-1: Charged particles 
moving through a magnetic field 
may change the direction of 
their motion. 
 
CHG-1.A: 
a. Calculate the magnitude 

and direction of the 
magnetic force of 
interaction between a 
moving charged particle of 
specified charge and 
velocity moving in a region 
of a uniform magnetic field. 

b. Describe the direction of a 
magnetic field from the 
information given by a 
description of the motion or 
trajectory of a charged 
particle moving through a 
uniform magnetic field. 

c. Describe the conditions that 
are necessary for a charged 
particle to experience no 
magnetic force of 
interaction between the 
particle and the magnetic 
field. 

 

CHG-1.A.1: The magnetic force of interaction 
between a moving charged particle and a uniform 
magnetic field is defined by the following 
expression: 
 

 
 
CHG-1.A.1.i: The direction of the magnetic force is 
determined by the cross-product or can be 
determined by the appropriate right-hand rule. 
 
CHG-1.A.1.ii: If the moving charged particle 
moves in a direction that is parallel to the 
magnetic-field direction, then the magnetic force 
of interaction is zero. 
 
CHG-1.A.1.iii: The charged particle must have a 
velocity to interact with the magnetic field. 

28.1, pp. 744–
748 

CHG-1: Charged particles 
moving through a magnetic field 
may change the direction of 
their motion. 
 
CHG-1.B: Describe the path of 
different moving charged 
particles (i.e., of different type 
of charge or mass) in a uniform 
magnetic field. 

CHG-1.B.1: The direction of the magnetic force is 
always in a direction perpendicular to the velocity 
of the moving charged particle. This results in a 
trajectory that is either a curved path or a 
complete circular path (if it moves in the field for 
a long enough time). 

28.1, pp. 746–
747 
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CHG-1: Charged particles 
moving through a magnetic field 
may change the direction of 
their motion. 
 
CHG-1.C: Derive an expression 
for the radius of a circular path 
for a charged particle of 
specified characteristics moving 
in a specified magnetic field. 
 

CHG-1.C.1: The magnetic force is always acting in 
a perpendicular direction to the moving particle. 
The result of this is a centripetal force of a 
constant magnitude and a centripetal acceleration 
of constant magnitude. 
 
CHG-1.C.1.i: The radius of the circular path can be 
determined by applying a Newton’s second law 
analysis for the moving charged particle in the 
centripetal direction.  

28.2, pp. 748–
752 

CHG-1: Charged particles 
moving through a magnetic field 
may change the direction of 
their motion. 
 
CHG-1.D: Explain why the 
magnetic force acting on a 
moving charge particle does not 
work on the moving charged 
particle. 
 

CHG-1.D.1: The magnetic force is defined as cross-
product between the velocity vector and the 
magnetic-field vector. The result of this is a force 
that is always perpendicular to the velocity vector. 

28.1, p. 745 

CHG-1: Charged particles 
moving through a magnetic field 
may change the direction of 
their motion. 
 
CHG-1.E: Describe the 
conditions under which a 
moving charged particle can 
move through a region of 
crossed electric and magnetic 
fields with a constant velocity. 
 

CHG-1.E.1: In a region containing both a magnetic 
field and an electric field, a moving charged 
particle will experience two different forces 
independent from each other. Depending on the 
physical parameters, it is possible for each force 
to be equal in magnitude and opposite in 
direction, thus producing a net force of zero on 
the moving charged particle. 

28.3, pp. 752–
753 

Topic 4.2: 
Magnetic 
Fields: Forces 
on Current-
Carrying Wires 
in Magnetic 
Fields 

FIE-4: A magnetic field can 
interact with a straight 
conducting wire with current. 
 
FIE-4.A: 
a. Calculate the magnitude of 

the magnetic force acting 
on a straight-line segment 
of a conductor with current 
in a uniform magnetic field. 

b. Describe the direction of 
the magnetic force of 
interaction on a segment of 
a straight current-carrying 

FIE-4.A.1: The definition of a the magnetic force 
acting on a straight-line segment of a current-
carrying conductor in a uniform magnetic field is: 
 

 

 
FIE-4.A.1.i: The direction of the force can be 
determined by the cross-product or by the 
appropriate right-hand rule. 

28.5, pp. 755–
757 
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conductor in a specified 
uniform magnetic field. 

 

FIE-4: A magnetic field can 
interact with a straight 
conducting wire with current. 
 
FIE-4.B: 
a. Describe or indicate the 

direction of magnetic forces 
acting on a complete 
conductive loop with 
current in a region of 
uniform magnetic field. 

b. Describe the mechanical 
consequences of the 
magnetic forces acting on a 
current-carrying loop of 
wire. 

 

FIE-4.B.1: A complete conductive loop 
(rectangular or circular) will experience magnetic 
forces at all points on the wire. The net direction 
of all of the forces will result in a net force of zero 
acting on the center of mass of the loop. 
 
FIE-4.B.1.i: Depending on the orientation of the 
loop and the field, the forces may result in a 
torque that acts on the loop. 

28.5, pp. 757–
760 

FIE-4: A magnetic field can 
interact with a straight 
conducting wire with current. 
 
FIE-4.C: Calculate the magnitude 
and direction of the net torque 
experienced by a rectangular 
loop of wire carrying a current in 
a region of a uniform magnetic 
field. 
 

FIE-4.C.1: The definition of torque can be applied 
to the loop to determine a relationship between 
the torque, field, current, and area of the loop. 

28.5, pp. 757–
760 

Topic 4.3: 
Magnetic 
Fields: Fields 
of Long, 
Current-
Carrying Wires 

FIE-5: Current-carrying 
conductors create magnetic 
fields that allow them to 
interact at a distance with other 
magnetic fields. 
 
FIE-5.A:  
a. Calculate the magnitude 

and direction of a magnetic 
field produced at a point 
near a long, straight 
current-carrying wire. 

b. Apply the right-hand rule 
for magnetic field of a 
straight wire (or correctly 
use the Biot–Savart law 
found in 4.D.1) to deduce 
the direction of a magnetic 

FIE-5.A.1: It can be shown or experimentally 
verified that the magnetic field of a long, straight 
current-carrying conductor is: 

 

 
FIE-5.A.1.i: The magnitude of the field is 
proportional to the inverse of distance from the 
wire. 
 
FIE-5.A.1.ii: The magnetic-field vector is always 
mutually perpendicular to the position vector and 
the direction of the conventional current. The 
result of this is a magnetic field line that is in a 
circular path around the wire in a sense (clockwise 
or counterclockwise) determined by the 
appropriate right-hand rule. 

29.1, pp. 772–
774 

B =
µoI
2πr
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field near a long, straight, 
current-carrying wire. 

 

FIE-5: Current-carrying 
conductors create magnetic 
fields that allow them to 
interact at a distance with other 
magnetic fields. 
 
FIE-5.B: 
a. Describe the direction of a 

magnetic-field vector at 
various points near multiple 
long, straight, current-
carrying wires. 

b. Calculate the magnitude of 
a magnetic field at various 
points near multiple long, 
straight, current-carrying 
wires. 

c. Calculate an unknown 
current value or position 
value given a specified 
magnetic field at a point 
due to multiple long, 
straight, current-carrying 
wires. 

 

FIE-5.B.1: The principle of superposition can be 
used to determine the net magnetic field at a 
point due to multiple long, straight, current-
carrying wires. 

29.2, pp. 777–
778 

FIE-5: Current-carrying 
conductors create magnetic 
fields that allow them to 
interact at a distance with other 
magnetic fields. 
 
FIE-5.C: 
a. Calculate the force of 

attraction or repulsion 
between two long, straight, 
current-carrying wires. 

b. Describe the consequence 
(attract or repel) when two 
long, straight, current-
carrying wires have known 
current directions. 

 

FIE-5.C.1: The field of a long, straight wire can be 
used as the external field in the definition of 
magnetic force acting on a segment of current 
carrying wire. 
 
FIE-5.C.1.i: The direction of the force can be 
determined from the cross-product definition or 
from the appropriate right-hand rule. 

29.2, pp. 777–
778 
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Topic 4.4 
Magnetic 
Fields: Biot-
Savart Law 
and Ampere’s 
Law 

CNV-8: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
are applied to physical systems 
containing moving charge. 
 
CNV-8.A: 
a. Describe the direction of 

the contribution to the 
magnetic field made by a 
short (differential) length of 
straight segment of a 
current-carrying conductor. 

b. Calculate the magnitude of 
the contribution to the 
magnetic field due to a 
short (differential) length of 
straight segment of a 
current-carrying conductor. 

 

CNV-8.A.1: The Biot–Savart law is the 
fundamental law of magnetism that defines the 
magnitude and direction of a magnetic field due 
to moving charges or current-carrying conductors. 
The law in differential form is: 
 

 

 
 

29.1, pp. 772–
777 

CNV-8: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
are applied to physical systems 
containing moving charge. 
 
CNV-8.B: 
a. Derive the expression for 

the magnitude of magnetic 
field on the axis of a circular 
loop of current or a 
segment of a circular loop. 

b. Explain how the Biot–Savart 
law can be used to 
determine the field of a 
long, straight, current-
carrying wire at 
perpendicular distances 
close to the wire. 

 

CNV-8.B.1: The Biot–Savart law can be used to 
derive the magnitude and directions of magnetic 
fields of symmetric current-carrying conductors 
(e.g., circular loops), long, straight conductors, or 
segments of loops. 

29.1, pp. 772–
777 

CNV-8: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
are applied to physical systems 
containing moving charge. 
 
CNV-8.C: 
a. Explain Ampère’s law and 

justify the use of the 
appropriate Amperian loop 
for current-carrying 
conductors of different 

CNV-8.C.1: Ampère’s law is a fundamental law of 
magnetism that relates the magnitude of the 
magnetic field to the current enclosed by a closed 
imaginary path called an Amperian loop. The law 
in integral form is: 
 

  

 
where  in this case is the enclosed current by 
the Amperian loop.  
 
CNV-8.C.1.i: Ampère’s law for magnetism is 

29.3, pp. 779–
782 

oB d Iµ⋅ =∫
 



I
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shapes such as straight 
wires, closed circular loops, 
conductive slabs, or 
solenoids. 

b. Derive the magnitude of the 
magnetic field for certain 
current-carrying conductors 
using Ampère’s law and 
symmetry arguments. 

c. Derive the expression for 
the magnetic field of an 
ideal solenoid (length 
dimension is much larger 
than the radius of the 
solenoid) using Ampère’s 
law. 

d. Describe the conclusions 
that can be made about the 
magnetic field at a 
particular point in space if 
the line integral in Ampère’s 
law is equivalent to zero.  

 

analogous to Gauss’s law for electrostatics and is 
a fundamental law that allows for an easier 
approach to determining some magnetic fields of 
certain symmetries or shapes of current-carrying 
conductors. The law is always true but not always 
useful. 
 
CNV-8.C.1.ii: The law can only be applied when 
the symmetry of the magnetic field can be 
exploited. Circular loops, long, straight wires, 
conductive slabs with current density, solenoids, 
and other cylindrical conductors containing 
current are the types of shapes for which 
Ampère’s law can be useful. 

CNV-8: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
are applied to physical systems 
containing moving charge. 
 
CNV-8.D: Describe the 
relationship of the magnetic 
field as a function of distance for 
various configurations of 
current-carrying cylindrical 
conductors with either a single 
current or multiple currents, at 
points inside and outside of the 
conductors. 
 

CNV-8.D.1: Ampère’s law can be used to 
determine magnetic-field relationships at 
different locations in cylindrical current-carrying 
conductors.  

29.3, pp. 779–
782 

CNV-8: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
are applied to physical systems 
containing moving charge. 
 
CNV-8.E: 
a. Describe the direction of a 

magnetic field at a point in 
space due to various 
combinations of 
conductors, wires, 
cylindrical conductors, or 

CNV-8.E.1: The principle of superposition can be 
used to determine the net magnetic field at a 
point in space due to various combinations of 
current-carrying conductors, loops, segments, or 
cylindrical conductors. Ampère’s law can be used 
to determine individual field magnitudes. The 
principle of superposition can be used to add 
those individual fields. 

29.3, pp. 779–
782 
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loops. 
b. Calculate the magnitude of 

a magnetic field at a point 
in space due to various 
combinations of 
conductors, wires, 
cylindrical conductors, or 
loops. 
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Unit 5: Electromagnetism 
 
AP® Exam Weighting: 11 class periods 
• Big Idea 1: Interactions produce changes in motion. 
• Big Idea 2: Forces characterize interactions between objects or systems. 
• Big Idea 3: Fields predict and describe interactions. 
• Big Idea 4: Conservation laws constrain interactions. 
 

 
Topic  

Enduring Understanding and 
Learning Objective 

 
Essential Knowledge 

 
Text Section(s) 

Topic 5.1:  
Electromagnet
ism: 
Electromagnet
ic Induction 
(Including 
Faraday’s Law 
and Lenz’s 
Law) 
 
 
 
 

CNV-9: There are laws that use 
symmetry and calculus to derive 
mathematical relationships that 
are applied to physical systems 
containing a magnetic field. 
 
CNV-9.A: 
a. Calculate the magnetic flux 

through a loop of regular 
shape with an arbitrary 
orientation in relation to the 
magnetic-field direction. 

b. Calculate the magnetic flux 
of the field due to a current-
carrying, long, straight wire 
through a rectangular-
shaped area that is in the 
plane of the wire and 
oriented perpendicularly to 
the field. 

c. Calculate the magnetic flux 
of a non-uniform magnetic 
field that may have a 
magnitude that varies over 
one coordinate through a 
specified rectangular loop 
that is oriented 
perpendicularly to the field. 

 

CNV-9.A.1: Magnetic flux is the scalar product of 
the magnetic-field vector and the area vector over 
the entire area contained by the loop. The 
definition of flux is: 
 

 

30.1, pp. 798–
801 

FIE-6: A changing magnetic field 
over time can induce current in 
conductors. 
 
FIE-6.A: 
a. Describe which physical 

situations with a changing 
magnetic field and a 
conductive loop will create 
an induced current in the 

FIE-6.A.1: Induced currents arise in a conductive 
loop (or long wire) when there is a change in 
magnetic flux occurring through the loop. This 
change is defined by Faraday’s law: 
 

 

 
where  is the induced EMF and N is number of 
turns. (In a coil or solenoid, the N refers to the 

30.1, pp. 798–
801 
 
30.2, pp. 801–
803 
 
30.3, pp. 805–
808 
 
30.4, pp. 808–

ε i = −N dφB

dt

 

ε i
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loop. 
b. Describe the direction of an 

induced current in a 
conductive loop that is 
placed in a changing 
magnetic field. 

c. Describe the induced 
current magnitudes and 
directions for a conductive 
loop moving through a 
specified region of space 
containing a uniform 
magnetic field. 

d. Calculate the magnitude 
and direction of induced 
EMF and induced current in 
a conductive loop (or 
conductive bar) when the 
magnitude of either the 
field or area of loop is 
changing at a constant rate. 

e. Calculate the magnitude 
and direction of induced 
EMF and induced current in 
a conductive loop (or 
conductive bar) when a 
physical quantity related to 
magnetic field or area is 
changing with a specified 
non-linear function of time. 

f. Derive expressions for the 
induced EMF (or current) 
through a closed conductive 
loop with a time-varying 
magnetic field directed 
either perpendicularly 
through the loop or at some 
angle oriented relative to 
the magnetic-field direction 

g. Describe the relative 
magnitude and direction of 
induced currents in a 
conductive loop with a 
time-varying magnetic field. 

 

number of turns of coil or conductive loops in the 
solenoid.) 
 
FIE-6.A.1.i: The negative sign in the expression 
embodies Lenz’s law and is an important part of 
the relationship.  
 
FIE-6.A.1.ii: Lenz’s law is the relationship that 
allows the direction of the induced current to be 
determined. The law states that any induced EMF 
and current induced in a conductive loop will 
create an induced current and induced magnetic 
field to oppose the direction change in external 
flux.  
 
FIE-6.A.1.iii: Lenz’s law is essentially a law relating 
to conservation of energy in a system and has 
mechanical consequences. 

810 
 
 

ACT-4: Induced forces (arising 
from magnetic interactions) that 
are exerted on objects can 
change the kinetic energy of an 
object. 
 
ACT-4.A: 

ACT-4.A.1: When an induced current is created in 
a conductive loop, the current will interact with 
the already-present magnetic field, creating 
induced forces acting on the loop. The magnitude 
and directions of these induced forces can be 
calculated using the definition of force on a 
current-carrying wire 

30.3, pp. 805–
808 
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a. Determine if a net force or 
net torque exists on a 
conductive loop in a region 
of changing magnetic field. 

b. Justify if a conductive loop 
will change its speed as it 
moves through different 
regions of a uniform 
magnetic field. 

 
ACT-4: Induced forces (arising 
from magnetic interactions) that 
are exerted on objects can 
change the kinetic energy of an 
object. 
 
ACT-4.B: 
a. Calculate an expression for 

the net force on a 
conductive bar as it is 
moved through a magnetic 
field. 

b. Write a differential equation 
and calculate the terminal 
velocity for the motion of a 
conductive bar (in a closed 
electrical loop) falling 
through a magnetic field or 
moving through a field due 
to other physical 
mechanisms. 

c. Describe the mechanical 
consequences of changing 
an electrical property (such 
as resistance) or a 
mechanical property (such 
as length/area) of a 
conductive loop as it moves 
through a uniform magnetic 
field. 

d. Derive an expression for the 
mechanical power delivered 
to a conductive loop as it 
moves through a magnetic 
field in terms of the 
electrical characteristics of 
the conductive loop. 
 

 

ACT-4.B.1: Newton’s second law can be applied to 
a moving conductor as it experiences a flux 
change.  
 
ACT-4.B.1.i: The force on the conductor is 
proportional to the velocity of the conductor. 
 
ACT-4.B.1.ii: A differential equation of velocity can 
be written for these physical situations. 
 
ACT-4.B.1.iii: This will lead to an exponential 
relationship with the changing velocity of the 
conductor. 
 
ACT-4.B.1.iv: Using calculus, the expressions for 
velocity, induced force, and power can all be 
expressed with these exponential relationships. 

30.2, pp. 801–
805 

Topic 5.2 
Electromagnet
ism: 

CNV-10: In a closed circuit 
containing inductors and 
resistors, energy and charge are 

CNV-10.A.1: By applying Faraday’s law to an 
inductive electrical device, a variation on the law 
can be determined to relate the definition of 

31.1, pp. 825–
826 
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Inductance 
(Including LR 
Circuits) 

conserved. 
 
CNV-10.A: 
a. Derive the expression for 

the inductance of a long 
solenoid. 

b. Calculate the magnitude 
and the sense of the EMF in 
an inductor through which a 
changing current is 
specified. 

c. Calculate the rate of change 
of current in an inductor 
with a transient current. 

 

inductance to the properties of the inductor:  
 

 

 
where  is defined as the inductance of the 
electrical device. 
 
CNV-10.A.1.i: The very nature of the inductor is to 
oppose the change in current occurring in the 
inductor. 

CNV-10: In a closed circuit 
containing inductors and 
resistors, energy and charge are 
conserved. 
 
CNV-10.B: Calculate the stored 
electrical energy in an inductor 
that has a steady-state current. 
 

CNV-10.B.1: The stored energy in an inductor is 
defined by: 
 

 

31.3, pp. 830–
832 

CNV-10: In a closed circuit 
containing inductors and 
resistors, energy and charge are 
conserved. 
 
CNV-10.C: 
a. Calculate initial transient 

currents and final steady-
state currents through any 
part of a series or parallel 
circuit containing an 
inductor and one or more 
resistors. 

b. Calculate the maximum 
current in a circuit that 
contains only a charged 
capacitor and an inductor. 

 

CNV-10.C.1: The electrical characteristics of an 
inductor in a circuit are the following: 
 
CNV-10.C.1.i: At the initial condition of closing or 
opening a switch with an inductor in a circuit, the 
induced voltage will be equal in magnitude and 
opposite in direction of the applied voltage across 
the branch containing the inductor. 
 
CNV-10.C.1.ii: In a steady-state condition, the 
ideal inductor has a resistance of zero and 
therefore will behave as a bare wire in a circuit. 
 
CNV-10.C.1.iii: In circuits containing only a 
charged capacitor and an inductor, the maximum 
current through the inductor can be determined 
by applying conservation of energy within the 
circuit and the two circuit elements that can store 
energy. 
 

31.1–31.2, pp. 
825–830 
 
31.3, pp. 830–
832 

CNV-10: In a closed circuit 
containing inductors and 
resistors, energy and charge are 
conserved. 
 
CNV-10.D: 
a. Derive a differential 

equation for the current as 

CNV-10.D.1: Kirchhoff’s rules can be applied to a 
series LR circuit. The result of applying Kirchhoff’s 
rules in this case will be a differential equation in 
current for the loop. 
 
CNV-10.D.1.i: The solution of this equation will 
yield the fundamental models for the LR circuit (in 
turning on the circuit and turning off the circuit). 

31.5, pp. 834–
837, 844 
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a function of time in a 
simple LR series circuit. 

b. Derive a solution to the 
differential equation for the 
current through the circuit 
as a function of time in the 
cases involving the simple 
LR series circuit. 

 
CNV-10: In a closed circuit 
containing inductors and 
resistors, energy and charge are 
conserved. 
 
CNV-10.E: Describe currents or 
potential differences with 
respect to time across resistors 
or inductors in a simple circuit 
containing resistors and an 
inductor, either in series or a 
parallel arrangement. 
 

CNV-10.E.1: Using Kirchhoff’s rules and the 
general model for an LR circuit, general current 
characteristics can be determined in an LR circuit 
in a series or parallel arrangement. 

31.5, pp. 834–
837, 844 

Topic 5.3 
Electromagnet
ism: Maxwell’s 
Equation 

FIE-7: Electric and magnetic 
fields that change over time can 
mutually induce other electric 
and magnetic fields. 
 
FIE-7.A: 
a. Explain how a changing 

magnetic field can induce an 
electric field. 

b. Associate the appropriate 
Maxwell’s equation with the 
appropriate physical 
consequence in a physical 
system containing a 
magnetic or electric field. 

 

FIE-7.A.1: Maxwell’s laws completely describe the 
fundamental relationships of magnetic and 
electric fields in steady-state conditions, as well as 
in situations in which the fields change in time. 

33.2, pp. 876–
878 

 


